Average value. (CLP 2.2) Goal: Compute average value of a function.

Average.

Definition: Consider data points f1, f2, m, fn _ (a collection of real numbers. The arthmetic mean fare is N J J f. $f_{ove} = \overline{f} = \langle f \rangle = \int_{N} (f_1 + f_2 + \dots + f_N) = \int_{N} \sum_{i=1}^{N} f_i$ discrete grantity: overge value of N samplings of a function. "overage" of a function Now suppose we want to define the $a \leq \pi \leq b$ f(z) on Rienann sum.

Average (contd.) Find the overage of for on [a, b]. o Partition [a,b] into N equal segments $[x_{i-1}, x_i]$. $(x_0 = a, x_N = b, \delta x = \frac{b-a}{N})$ o compute mean of $f(x_1^*)$, $f(x_2^*)$, ..., $f(x_N^*)$: o Pick zite[zin,zi]. $fore = \overline{f} = \langle f \rangle = \frac{1}{N} \sum_{n \in \mathbb{N}} f(\overline{r}; \overline{r})$ • Multiply and divide by Δz : $f_{ave} = \frac{1}{N \Delta z} = \int_{i=1}^{N} f(z_i^*) \Delta z \approx \int_{b-\alpha}^{b} \int_{\alpha}^{b} f(z_i) dz$

Meon of integrable function. Let f be on integrable function, then the overage value \overline{f} of f(x) for x in Definition. LUIUS 18 $f_{ave} = \overline{f} = \frac{1}{b-\alpha} \int_{\alpha}^{b} f(x) dx$. For positive (or regative) function: e (or negative) function. f(x) = orea 1 $g(b \cdot a) = \int_{a}^{b} f(x) dx$ $g(x) = \overline{f} \iff \int_{a}^{b} \overline{f} dx = \int_{a}^{b} f(x) dx$ y=f(x). orea 1 area 1 = orea 2.

Example 1 Find the average of $f(x) = x^2$ on $o \leq x \leq 3$. By definition: $\overline{f} = \frac{1}{3-0} \int_{-\infty}^{\infty} \pi$ 2 dz Ť = raded area are eged 3

Example 2.
Act v(t) be the speed of a particle on a
time interval
$$0 \le t \le T$$
. What is the average speed?
 $\overline{V} = \frac{1}{T} \int_{0}^{T} V(t) dt$
 $= \frac{1}{T} \int_{0}^{T} \frac{dx}{dt} dt$
 $= \frac{1}{T} \left[X(t) \right]_{0}^{T}$
 $= \frac{\chi(T) - \chi(0)}{T}$
overge velocity is distance travelles our total time.

Example 3. A cup of tea has a temperature of 95°C in a room where the temperature is 20°C. Newton's low of cooling states the temperature of the after time t $T(t) = 20 + 75 e^{-t/so}$ beys is the average value during the first half hour? What $T_{ave} = \frac{1}{30} \int (20 + 75 e^{-t/50}) dt$ $= \frac{1}{30} \left[\frac{202}{75.50} + \frac{75}{50} \right]^{30}$ $= 20 - \frac{75.50}{30} e^{-3/5} - \left(0 - \frac{75.50}{30}\right)$ $= 76.4^{\circ}C.$

trample. Find the number c so that the MVT for integrals is satisfied for $f(x) = z^2 + 3x + 2$ on $1 \le x \le 4$ overse value = $\frac{1}{3}\int (x^2+3x+2)dx$ $= \frac{1}{3} \left[\frac{\pi^{3}}{3} + \frac{3\pi^{2}}{2} + 2\pi \right]^{4}$ $=\frac{1}{3}\left[\frac{64}{3}+\frac{48}{2}+8-\frac{1}{3}-\frac{3}{2}+2\right]$ <u>99</u>, $c^{2}+3c - \frac{95}{2} = 0$ $c^{2}+3c+2 = \frac{99}{2} = \frac{3}{2}$ $c = -\frac{3 \pm \sqrt{67}}{2} \left(= -\frac{3 \pm \sqrt{9^2 - 4 \cdot (-\frac{95}{2})}}{2 \cdot 1} \right)$