Average value. $(C L P 2.2)$
Goal: Compute average value of a function.

find $\bar{f} \in \mathbb{R}$ s.t. area $1=$ area 2

$$
f\left(x_{1}\right), f\left(x_{2}\right) \ldots, f\left(x_{N}\right)
$$

Average.
Definition:
Consider data points $f_{1}, f_{2} \ldots, f_{N}$ _ C a collection of real numbers. The arthmetic mean fave is

$$
\begin{aligned}
& \text { numbers. The arthmetic mean fave w } \\
& f_{\text {ave }}=\bar{f}=\langle f\rangle=\frac{1}{N}\left(f_{1}+f_{2}+\ldots+f_{N}\right)=\frac{1}{N} \sum_{i=1}^{N} f_{i}
\end{aligned}
$$ discrete quantity: averge value of N samplings of a function.

Now suppose we wont to define the "average" of a function $f(x)$ on $a \leq x \leq b$.

Rienann sum.

Average (contd.)
Find the average of $f(x)$ on $[a, b]$.

- Partition $[a, b]$ into N equal segments $\left[x_{i-1}, x_{i}\right]$.

$$
\left(x_{0}=a, \quad x_{N}=b, \quad \Delta x=\frac{b-a}{N}\right)
$$

- Pick $x_{i}^{*} \in\left[x_{i-1}, x_{i}\right]$.
- Compute mean of $f\left(x_{1}^{*}\right), f\left(x_{2}^{*}\right), \ldots, f\left(x_{N}{ }^{*}\right)$:

$$
f_{\text {ave }}=\bar{f}=\langle f\rangle=\frac{1}{N} \sum_{i=1}^{N} f\left(x_{i}^{*}\right) \text {. }
$$

- Multiply and divide by Δx :

$$
\begin{aligned}
& \text { uetiply and divide by } \Delta x:=1 \\
& f_{\text {ave }}=\frac{1}{N \cdot \Delta x} \sum_{i=1}^{N} f\left(x_{i}^{*}\right) \Delta x \approx \frac{1}{b-a} \int_{a}^{b} f(x) d x
\end{aligned}
$$

Mean of integrable function.
Definition.
Let f be on integrable function, then the average value \bar{f} of $f(x)$ for x in $[a, b]$ is

$$
f_{\text {ave }}=\bar{f}=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

For positive (or negative) function:

$$
\begin{aligned}
& \bar{f}(b-a)=\int_{a}^{b} f(x) d x \\
\Leftrightarrow & \int_{a}^{b} \bar{f} d x=\int_{a}^{b} f(x) d x
\end{aligned}
$$

Example 1
Find the average of $f(x)=x^{2}$ on $0 \leq x \leq 3 . \quad y=x^{2}$
By definition:

$$
\begin{aligned}
\bar{f} & =\frac{1}{3-0} \int_{0}^{3} x^{2} d x \\
& =\left.\frac{1}{3} \frac{x^{3}}{3}\right|_{0} ^{3} \\
& =\frac{27}{9} \\
& =3 .
\end{aligned}
$$

Example 2.
Lit $v(t)$ be the speed of a particle on a time interval $0 \leqslant t \leq T$. what is the average speed?

$$
\begin{aligned}
\vec{V} & =\frac{1}{T} \int_{0}^{T} v(t) d t \\
& =\frac{1}{T} \int_{0}^{T} \frac{d x}{d t} d t \\
& =\frac{1}{T}[x(t)]_{0}^{T} \\
& =\frac{x(T)-x(0)}{T}
\end{aligned}
$$

overge velocity is distance travelles over tote time.

Example 3.
A cup of tea has a temperature of $95^{\circ} \mathrm{C}$ in a room where the temperature is $20^{\circ} \mathrm{C}$. Newtons low of cooling states the temperature of tea after time t obeys

$$
T(t)=20+75 e^{-t / 50}
$$

What is the average value during the first half hour?
sen

$$
\begin{aligned}
T_{\text {ave }} & =\frac{1}{30} \int_{0}^{30}\left(20+75 e^{-t / 50}\right) d t \\
& =\frac{1}{30}\left[20 x-75.50 e^{-t / 50}\right]_{0}^{30} \\
& =20-\frac{75.50}{30} e^{-3 / 5}-\left(0-\frac{75.50}{30}\right) \\
& =76.4^{\circ} \mathrm{C}
\end{aligned}
$$

Mean value theorem for int grabs.

Theorem: If $f(x)$ is continuous on $[a, b]$ then there exists a number $c \in[a, b]$ s.t.

$$
\int_{a}^{b} f(x) d x=f(c) \cdot(b-a)
$$

Interpretation: $\frac{1}{b-a} \int_{a}^{b} f(x) d x=f(c)$.
somewhere on $[a, b]$, the function takes average value.

Example.
Find the number c so that the MVT for integral is sat's fired for $f(x)=x^{2}+3 x+2$ on $1 \leqslant x \leq 4$

$$
\begin{aligned}
& \text { avers value }=\frac{1}{3} \int_{1}^{4}\left(x^{2}+3 x+2\right) d x \\
&=\frac{1}{3}\left[\frac{x^{3}}{3}+\frac{3 x^{2}}{2}+2 x\right]_{1}^{4} \\
&=\frac{1}{3}\left[\frac{64}{3}+\frac{48}{2}+8-\frac{1}{3}-\frac{3}{2}+2\right] \\
&=\frac{99}{2} \cdot \\
& c^{2}+3 c+2=\frac{99}{2} \Rightarrow c^{2}+3 c-\frac{95}{2}=0 \\
& c=\frac{-3 \pm \sqrt{67}}{2}\left(=\frac{-3 \pm \sqrt{9^{2}-4 \cdot\left(\frac{-95}{2}\right)}}{2 \cdot 1 \cdot}\right)
\end{aligned}
$$

