Center of mass.

The seesaw perfectly balances if the lover is at counter of mass. Balance torque exerted by m_{1} and m_{2} to computed center of mass.
Torque, $T=F \times d, \quad F$ is the gravitational force (rotational force) d is the distance from Cover.

How do wo calculate center of mass?

Canter of mass. (1D and discrete).
A spume mass m_{1} is at x_{1}.
Assume mass m_{2} is at x_{2}.

If we try to balance at \bar{x} then.
The torques are

$$
\begin{aligned}
& T_{1}=m_{1} g\left(\bar{x}-x_{1}\right) \\
& T_{2}=m_{2} g\left(x_{2}-\bar{x}\right)
\end{aligned}
$$

so, $T_{1}=T_{2} \Rightarrow m_{1}\left(\bar{x}-x_{1}\right)=m_{2}\left(x_{2}-\bar{x}_{1}\right)$

$$
\Rightarrow \bar{x}=\frac{\left(m_{1} x_{1}+m_{2} x_{2}\right)}{m_{1}+m_{2}}=\frac{\text { Total moment }}{\text { total mass. }}
$$

Let m be total mass. If there are N^{2} masses:

$$
\bar{x}=\frac{1}{m} \sum_{i=1}^{N} m_{i} x_{i} \quad, m=\sum_{i=1}^{N} m_{i}
$$

$m_{i} x_{i}$ is the moment of it mass.

Center of mass (2D and discrete).
In a 20 scenario with point marses $m_{1}, m_{2}, \ldots, m_{N}$ centered at

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\left(x_{N}, y_{N}\right),
$$

the cantor of mass are given by

$$
\bar{x}=\frac{1}{m} \sum_{i=1}^{N} m_{i} x_{i} \quad, \quad \bar{y}=\frac{1}{m} \sum_{i=1}^{N} m_{i} y_{i}
$$

10 continuous case.
If a body consists of mass distributed along a straight line with density $\rho(x)(\mathrm{kg} / \mathrm{m})$ with $a \leq x \leq b$, the contr of mass \bar{x} is.

$$
\begin{equation*}
\bar{x}=\frac{\int_{a}^{b} x \rho(x) d x}{\int_{a}^{b} \rho(x) d x}=\frac{\text { Moment about origin }}{\text { Total mass. }} \tag{1}
\end{equation*}
$$

Remark: use Riemown sum to show the center of mass is (1). Go from discrete to continuo us.

Example.
A metal rod is 50 cm long. Its linear density at point x from left and is $\rho(x)=\frac{1}{100-x}(9 \mathrm{~m} / \mathrm{cm})$. Find the mass and center of mass of the rod.
So ln

$$
\begin{aligned}
& \text { Total moment }=\int_{0}^{50} \frac{x}{100-x} d x=\int_{0}^{50} \frac{x-100}{100-x} d x+\int_{0}^{50} \frac{100}{100-x} d x \\
& \\
& =-50+100 \int_{0}^{50} \frac{1}{100-x} d x . \\
& \text { Total mass }=\int_{0}^{50} \rho(x) d x=\int_{0}^{50} \frac{1}{100 \cdot x} d x
\end{aligned}
$$

Centroid of a lamina.
Lamina is a thin "plate" which occupies some area in \mathbb{R}^{2}. We will assume that the density $\rho(x, y)$ is constant. We wont to calculate the centroid (\bar{x}, \bar{y}), ie. the counter of mass.

Case 1. Consider a lamina with constant density ρ whose lower boundary is the x-axis and the upper boundary is $y=f(x)$.

Case 1 lower bound is x-ax's.
We first find moment about y-axis:

- Take a chunck Δx at a signed distance x from y-axis.
- The area of strip $\approx f(x) \cdot \Delta x$.

- Mass of strip $\approx(f(x) \cdot \Delta x) \rho$.
- Moment of strip about y-axis, labeled ΔM_{y} :

$$
\Delta M_{y}=x(f(x) \Delta x) \rho(g)
$$

- Then integrating over all strips:

$$
\bar{x}=\frac{M_{y}}{M}=\frac{\int_{a}^{b} x f(x) \rho d x}{\int_{a}^{b} f(x) \rho d x}=\frac{\int_{a}^{b} x f(x) d x}{\int_{a}^{b} f(x) d x}
$$

Case 1 lower bound is x-ax's (contd.).
Now, we find moment about x-axis. The center of mass of the strip of width Δx is $y=\frac{f(x)}{2}$ and
 con be thought of ∞ concentrated at $(x, y / 2)$
Again, mas of strip is $(f(x) \cdot \Delta x) \rho$.
So, moment about x-axis is:

$$
M_{x}=\int_{a}^{b} \frac{f(x)}{2} \cdot f(x) \rho d x .
$$

$$
\begin{aligned}
& \text { The } y \text {-ordinate of center of mass } \bar{y} \text { is. } \\
& \bar{y}=\frac{M_{x}}{M}=\frac{\frac{1}{2} \int_{a}^{b} f(x)^{2} \rho d x}{\int_{a}^{b} f(x) \rho d x}=\frac{\frac{1}{2} \int_{a}^{2} d x}{\int_{a}^{b} f(x) d x}
\end{aligned}
$$

Example:
Find the inter of mass of a parabolic plate $y=1-x^{2}$ above $y=0$ and $-1 \leq x \leq 1$. Assume constant density.

Sol ${ }^{k}$:

- By symmetry, we should have $\bar{x}=0$.

$$
\begin{aligned}
M_{y} & =\int_{-1}^{1} x f(x) \rho d x \\
& =\rho \int_{-1}^{1} x\left(1-x^{2}\right) d x=0
\end{aligned}
$$

so, $\bar{x}=\frac{\mu_{y}}{M}=0$.

Example contd.
Now, $M_{x}=\frac{1}{2} \int_{-1}^{1} \rho f(x)^{2} d x=\frac{\rho}{2} \int_{-1}^{1}\left(1-x^{2}\right)^{2} d x=\frac{\rho}{2} \int_{-1}^{1} 1-2 x^{2}+x^{4} d x$
So, $\mu_{x}=\frac{\rho}{2}\left[x-\frac{2 x^{3}}{3}+\frac{x^{5}}{5}\right]_{-1}^{1^{-1}}=\frac{\rho}{2} \cdot\left[1-\frac{2}{3}+\frac{1}{5}+1-\frac{2}{3}+\frac{1}{5}\right]$ $=\frac{\rho}{2} \cdot\left[\frac{30-20+6}{15}\right]=\frac{8 \rho}{15}$
and $M=\int_{-1}^{1} f(x) \rho d x=\rho \int_{-1}^{1} 1-x^{2} d x=\rho\left[x-\frac{x^{3}}{3}\right]_{-1}^{1}$

$$
\begin{aligned}
& =\rho\left[1-\frac{1}{3}+1-\frac{1}{3}\right] \\
& =\frac{4}{3} \rho
\end{aligned}
$$

So, $\bar{y}=\frac{8}{15} \cdot \frac{3}{4}=\frac{2}{5}$

Case 2 centroid of general lamina.
Next we develop the control of lamua defined by $a \leq x \leq b, \quad B(x) \leq y \leq T(x)$.

Algin, assume constant density.
The total mass M is

$$
\begin{aligned}
& \text { The total mass } M \text { is } \\
& M=\int_{a}^{b} \rho[T(x)-B(x)] d x
\end{aligned}
$$

Moment about y-axis of $s l i c e: \Delta M_{y}=x[T(x)-B(x)] \rho \Delta x$ so, total moment about y-axis:

$$
M_{y}=\int_{a}^{b} x[T(x)-B(x)] \rho d x
$$

Thus, x-coordinate of centred \bar{x} is:

$$
\bar{x}=\left(\int_{a}^{b^{7}} x[T(x)-B(x)] d x\right) /\left(\int_{a}^{b}[T(x)-B(x)] d x\right)
$$

Nov. to find moment about x-axis, observe that the center of mass of as lice is $\frac{T(x)+B(x)}{2}$ and we con put all mass of the slice at this point.

So, moment about x-axis of a slice is:

$$
\Delta M_{x}=\left(\frac{I(x)+B(x)}{2}\right)(T(x)-B(x)) \rho \Delta x
$$

Summing over dell slices:

$$
\bar{y}=\frac{M_{x}}{M}=\frac{\frac{1}{2} \int_{a}^{b}\left(T(x)^{2}-B(x)^{2}\right) d x}{\int_{a}^{b}(T(x)-B(x) d x}
$$

and recall: $\bar{x}=\frac{\mu_{y}}{M}=\frac{\int_{a}^{b} x(T(x)-B(x)) d x}{\int_{a}^{b}(T(x)-B(x)) d x}$

Example
Find the centroid of a region consisting of a rectangle of width $2 R$ and height H which has a semicircle of radius R on one end. The picture is

By symmetry $\bar{x}=0$. centroid must $l i e$ on the y-axis.

$$
\begin{aligned}
& \text { Area }=2 R H+\frac{1}{2} \pi R^{2} \\
& T(x)=\sqrt{R^{2}-x^{2}}, \quad B(x)=-H \\
& \text { and } \bar{y}=\frac{1}{2 \text { Area }} \int_{-R}^{R}\left(T(x)^{2}-B(x)^{2}\right) d x
\end{aligned}
$$

Example (contd.)
so, $\bar{y}=\frac{2}{2 \text { Area }} \int_{0}^{R}\left(R^{2}-x^{2}-H^{2}\right) d x=\frac{1}{2 \text { Area }}\left[R^{2} x-\frac{x^{3}}{3}-H^{2} x\right]_{0}^{R}$

$$
\Rightarrow \bar{y}=\frac{1}{\text { Area }}\left[R^{3}-\frac{R^{3}}{3}-R H^{2}\right]=\frac{\frac{2 R^{3}}{3}-R H^{2}}{2 R H+\frac{1}{2} \pi R^{2}}=\frac{4 R^{3}-6 R H^{2}}{12 R H+3 \pi R^{2}}
$$

so, $\bar{y}=\frac{4 R^{2}-6 H^{2}}{12 H+3 \pi R}$
observe: if $R \ll H, \bar{y} \approx \frac{-6 H^{2}}{12 H}=-\frac{H}{2}$
if $R \gg H, \bar{y} \approx \frac{4 R^{2}}{3 \pi R}=\frac{4 R}{3 \pi}$

Question:
Find the centroid of a semicircle of radios R as shown.

