Numerical integration.
Exact integration is useful, for example in differential equation, but we need to be able to find onti-derivative. This is not always possible-
Consider $\int e^{-x^{2}} d x$.
How do we solve this problem?
(1) Taylor series (about $x=0$)

$$
e^{-x^{2}}=1-x^{2}+\frac{x^{4}}{2}-\frac{x^{6}}{3}+\cdots
$$

(2) Approximate the area under the curve.

Riemann sum.
One way to approximate the integral is Rienowen sums.

$$
\int_{a}^{b} f(x) d x \approx\left[x_{i-1}, x_{i}\right] .
$$

- Left endpoint , $x_{i}^{*}=x_{i-1}$
- Right endpoint, $x_{i}^{*}=x_{i}$
- Mid-point, $x_{i}^{*}=\left(x_{i-1}+x_{i}\right) / 2$.

The: (Midpoint rale)

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x \approx M_{n}=\sum_{i=1}^{n} f\left(\bar{x}_{i}\right) \Delta x \\
& \Delta x=\frac{b-a}{n}, \quad x_{i}=a+i \Delta x \quad, \quad \bar{x}_{i}=\left(x_{i-1}+x_{i}\right) / 2
\end{aligned}
$$

Trapezoid approximation

- Trapezoid rule approximates the area under curve using little trapezoid.
- Approximate $f(x)$ on $\left[x_{i-1}, x_{i}\right]$ using a line. The function $f(x)$ on $[a, b]$ is approximated as a sequence of lines.

Trapezoid rule.

$$
\begin{aligned}
A_{r a} & =\frac{f\left(x_{i}\right)+f\left(x_{i-1}\right)}{2} \cdot \Delta x \cdot \\
\Delta x & =\frac{b-a}{n}
\end{aligned}
$$

Theorem (Trapezoid rule)

$$
\begin{aligned}
& \begin{aligned}
\int_{a}^{b} f(x) & d x \\
& =\sum_{i=1}^{n} \frac{\left(f\left(x_{i-1}\right)+f\left(x_{i}\right)\right)}{2} \cdot \Delta x \\
& =\frac{\Delta x}{2}\left(f\left(x_{0}\right)+2 f\left(x_{i}\right)+2 f\left(x_{2}\right)+\ldots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right)
\end{aligned} \\
& \Delta x=\frac{b-a}{n}, x_{i}=a_{i}+i \Delta x .
\end{aligned}
$$

Simp sons rule.
Approximate the curve by a sequence of parabola.

$$
\frac{\Delta x}{3}\left(y_{i-1}+4 y_{i}+y_{i+1}\right)
$$

The general equation of parabola is $y(x)=A x^{2}+B x+C$.

- Divide $[a, b]$ into n syments. $\Delta x=(b-a) / n$.
- Approximate $f(x)$ on $\left[x_{i-1}, x_{i+1}\right]$ using a parabola. He find the area of parabola that goes through points.

$$
\left.\left(x_{i-1}, f\left(x_{i-1}\right)\right) \text {, }\left(x_{i}, f\left(x_{i}\right)\right),\left(x_{i+1}\right) f\left(x_{i+1}\right)\right)
$$

- Add up the area of each parabola

Simpsons rule.
Area of parabola that con be defined by

$$
\left(x_{i-1}, f\left(x_{i-1}\right)\right),\left(x_{i}, f\left(x_{i}\right)\right),\left(x_{i+1}, f\left(x_{i+1}\right)\right)
$$

is equal to area of parabola defined by.

$$
\left(-\Delta x, f\left(x_{i-1}\right)\right),\left(0, f\left(x_{i}\right)\right),\left(\Delta x, f\left(x_{i+1}\right)\right)
$$

or, $\left(-h, y_{i-1}\right),\left(0, y_{i}\right)\left(h, y_{i+1}\right)$. let $h=\Delta x$

$$
\frac{\Delta x}{3}\left(y_{i-1}+4 y_{i}+y_{i+1}\right)
$$

Remark: number of segments $\left[x_{i-1}, x_{i}\right]$ is even.

Area of a little parabola.
Area of parabola given by $\int_{-h}^{h} A x^{2}+B x+C d x$ is.

$$
\begin{equation*}
\text { Area } \left.=\frac{A x^{3}}{3}+\frac{B x^{2}}{2}+C x\right]_{-h}^{h}=2 A h^{3} / 2 C h=\frac{h}{3}\left(2 A h^{2}+6 C\right) \text {. } \tag{1}
\end{equation*}
$$

And, $\left(-h, y_{i-1}\right)$ satisfies $A h^{2}-B h+C=y_{i-1}$
$\left(0, y_{i}\right)$ satisfies $A \cdot O^{2}-B \cdot O+C=y_{i}$
$\left(h, y_{i+1}\right)$ satisfies $A h^{2}+B h+C=y_{i+1}$
So, from (ii) $C=y_{i}$, combine (1) \& (II1) to get

$$
A=\left(y_{i-1}+y_{i+1}-2 y_{i}\right) / 2 h^{2}
$$

So. Area $=\frac{h}{3}\left(y_{i-1}+y_{i+1}-2 y_{i}+6 y_{i}\right)=\frac{h}{3}\left(y_{i-1}+4 y_{i}+y_{i+1}\right)$

Simpson's rule.
To approximate $\int_{a}^{b} f(x) d x$, add areas of lithe parabola.

$$
\begin{array}{ll}
\text { Area }=\frac{h}{3}\left(y_{i-1}+4 y_{i}+y_{i+1}\right), & h=\Delta x \\
y_{i}=f\left(x_{i}\right) .
\end{array}
$$

Theorem (Simpsons rule).

$$
f\left(x_{2}\right)+f\left(x_{2}\right)
$$

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x \approx S_{n} \\
&=\frac{\Delta x}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+\right. \\
&\left.2 f\left(x_{4}\right)+\ldots+2 f\left(x_{n-2}\right)+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]
\end{aligned}
$$

where $\Delta x=\frac{b-a}{n}$, and n is even.

Error in approximation.
Error $(n) \leqslant f($ gradient,$n)$
The approximation error is the difference between our approximation and the value of integral ii.
$\underset{\left.\text { depends on } n \rightarrow \operatorname{Error}(n)=\left|\int_{a}^{b} f(x) d x-M_{n}\right| \quad \begin{array}{c}\text { (i fusing } \\ \text { mid point rale }\end{array}\right) .}{ }$

- As $n \rightarrow \infty$, the error goes to zero. (think Riemann sum).

How quickly does error go to zero?

- The decay rate of error depends on how "curry". is the function which is charaterzed by gradient.
- Error depends on higher order derivatives if approxima. ion uses higher order polynomial Midpoint $-2^{\text {nd }}$ order derivative. Trapezoid durative.

Error bound.
Theorem. (CLP-1.11.13).
Suppose that $\left|f^{\prime \prime}(x)\right|<k$ on $a \leqslant x \leqslant b$.
Suppose that $\left|f^{(4)}(x)\right| \ll$ on $a \leqslant x \leqslant b$
If $E_{M}(x), E_{T}(n)$ and $E_{S}(n)$ are the errors of the midpoint mule, trapezoid rale and simpson's rule respectively then.

$$
\begin{aligned}
& \text { - } E_{T}(n) \leq \frac{k(b-a)^{3}}{12 n^{2}} \quad \circ E_{M}(n) \leq \frac{k(b-a)^{3}}{24 n^{2}} \\
& \text { - } E_{S}(n) \leq \frac{L(b-a)^{5}}{180 n^{4}} \quad n^{4}>n^{2}
\end{aligned}
$$

Midpoint is slightly better than trapizrd but Simpson is bat

Exampla
Approximat $\int_{1}^{2} \frac{1}{x} d x$ using trapezid rule and $n=5$.
soln: $T_{n}=\frac{\Delta x}{2}\left(f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\ldots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right)$

$$
a=1, b=2, \quad \Delta x=1 / 5=0.2 .
$$

So,

$$
\begin{aligned}
& T_{n}=0.1(f(1)+2 f(1.2)+2 f(1.4)+2 f(1.8)+f(2)) \\
&=0.6956 \ldots \\
& E_{T}(n) \leq \frac{k(b-a)^{3}}{12 n^{2}}
\end{aligned}
$$

Error in approximation.
Consider some question: $\int_{1}^{2} \frac{1}{x} d x$. using trapezoid rule $\ell_{n}=5$.
Exact onswer: $\begin{aligned} \int_{1}^{2} \frac{1}{x} d x=\left.\ln |x|\right|_{1} ^{2}=\ln |2|-\ln |1| & =\ln 2 \\ & =0.69\end{aligned}$

$$
=0.6931 \ldots
$$

Lets use Error bound theorem to provide a bound on approximation and compare to exact error.
so, $f^{\prime}(x)=1 / x^{2}, \quad f^{\prime \prime}(x)=-2 / x^{3}$.
note that $\left|f^{\prime \prime}(x)\right| \leqslant 2$ on $1 \leqslant x \leqslant 2$
so, $\epsilon_{T}^{-}(5) \leqslant \frac{k(b-a)^{3}}{12 n^{2}}=\frac{2}{12.5^{2}}=\frac{1}{150} \approx 0.00666 \cdots$
Exact error:

$$
E_{T}(5)=\left|\int_{a}^{b} f(x) d x-T_{5}\right|=|0.6931-0.6956|=0.0025
$$

Example.
Consider same integral $\int_{1}^{2} \frac{1}{x} d x$ using trapezoid
How big do we need n to be in adder for the error to len that 10^{-6} ?
so, we need

$$
E_{T}^{-}(n) \leqslant 10^{-6}
$$

so, we need

$$
\begin{aligned}
& 10^{-6} \geqslant \frac{k(b-a)^{3}}{12 n^{2}}=\frac{2}{12 n^{2}} \\
& \Leftrightarrow \quad n^{2} \geqslant \frac{2}{12 \cdot 10^{-6}} \\
& \Leftrightarrow \quad n \geqslant \sqrt{\frac{10^{6}}{36}} \approx 408.25 .
\end{aligned}
$$

$$
E_{T}(n) \leq \frac{k(b-a)^{3}}{12 n^{2}} \leq 10^{-6}
$$

Example.
Consider some integral $\int_{1}^{2} \frac{1}{x} d x$ using Simpson's mule
How big do we need n to be in adder for the error to lon that 10^{-6} ?
Sorn. Th $4^{\text {th }}$ derivative is $24 / x^{5}$. so,

$$
\left|f^{(4)}(x)\right| \leq 24 \quad \text { on } \quad 1 \leq x \leq 2
$$

we neal

$$
\begin{aligned}
& 10^{-6} \geqslant \frac{L(b-a)^{5}}{180} n^{4} \\
\Leftrightarrow & n^{4} \geqslant \frac{24}{18010^{-6}} \\
\Leftrightarrow & n \geqslant\left(\frac{2}{15} 10^{-6}\right)^{1 / 4} \approx 19.1
\end{aligned}
$$

