Series.
Consider a sequence $\left\{o_{n}\right\}$. Lets add up the terms to get

$$
a_{1}+a_{2}+a_{3}+\ldots
$$

This is called an infinite series and is denoted by $\sum_{i=1}^{\infty} a_{n}$.
We wont to see whether the infinite series $\sum_{i=1}^{\infty} a_{i}$ is finite (converges) or is infinite (diverges).

Example.
Consider the infinite series $1+2+3+\cdots=\sum_{i=1}^{\infty}$ i Lets lookat the partial sum of $1+2+3+\cdots$.

$$
\begin{gathered}
s_{1}=1, \quad s_{2}=1+2=3, \quad s_{3}=1+2+3=6, \cdots \\
s_{n}=1+2+\cdots+n=\frac{n(n+1)}{2}
\end{gathered}
$$

The sequence given by $\left\{s_{n}\right\} \rightarrow \infty$ os $n \rightarrow \infty$. So, they dinge

Example
Consider the infin. te series $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^{n}}+\cdots$
Again, lit's look at the partial sum:

$$
\begin{gathered}
s_{1}=\frac{1}{2}, \quad s_{2}=\frac{1}{2}+\frac{1}{4}=\frac{3}{4}, \quad s_{3}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}=\frac{7}{8}, \cdots \\
s_{n}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^{n}}=\frac{2^{n}-1}{2^{n}}
\end{gathered}
$$

Since $\frac{2^{n}-1}{2^{n}}=1-2^{-n} \rightarrow 1$ as $n \rightarrow \infty$, we get $\sum_{i=1}^{\infty} \frac{1}{2^{n}}$ converges to 1 .

Partial sum.

$$
\left\{\frac{1}{n}\right\}
$$

Now that we have looked at two examples, letis think about the "harmonic" series $1+\frac{1}{2}+\frac{1}{3}+\cdots$

Definition. Let $a_{1}+a_{2}+a_{3}+\ldots$ be an in finite series and let

$$
s_{n}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}
$$

denotes its $n^{\text {th }}$ partial sum. If $s_{n} \rightarrow s$ for some finite real number s, we write

$$
a_{1}+a_{2}+a_{3}+\ldots=s \quad \text { or } \sum_{i=1}^{\infty} a_{i}=s
$$

and say that the series converges. If $\left\{S_{n}\right\}$ does not converges then we say $\sum_{i=r}^{n} a_{i}$ diverges.

Arthemetic operations.
Theorem. (CLP $T_{m} 3 \cdot 2 \cdot 9$). Let $\left\{o_{n}\right\}$ and $\left\{b_{n}\right\}$ be convergent sequences with $\sum_{n=1}^{\infty} a_{n}=A$ and $\sum_{n=1}^{\infty} b_{n}=B$. further let c be any real number. Then

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)=A+B . \quad\left\{a_{n}+b_{n}\right\} \\
& \sum_{n=1}^{\infty} c a_{n}=c A . \\
& \sum_{n=1}^{\infty}\left(a_{n}-b_{n}\right)=A-B .
\end{aligned}
$$

Remark: product and ratios are not so simple to calculate.

Geometric series.
One of th simplot tape of infinite series that we con analyze are geometric series, which have the general form

$$
\sum_{n=1}^{\infty} a r^{n-1}=a+a r+a r^{2}+a r^{3}+\cdots \sum_{n=1}^{\infty} r^{n-1}
$$

The main result for geometric series is a follows:
Theorem: Consider the geometric series $\sum_{n=1}^{\infty} a r^{n}$. If $|r|<1$, then it converges and

$$
\sum_{n=1}^{\infty} a r^{n-1}=\frac{a}{1-r}
$$

If $|r| \geqslant 1$ and $a \neq 0$ then the series diverges.

Geometric series (proof).
proof of theorem: We start with the $n^{\text {th }}$ partial sum:

$$
s_{n}=a+a r+a r^{2}+\cdots+a r^{n}
$$

Now,

$$
\begin{equation*}
r s_{n}=a r+a r^{2}+a r^{3}+\cdots+a r^{n+1} \tag{11}
\end{equation*}
$$

Consider

$$
s_{n}-r s_{n}=\left(a+a r^{\prime}+\ldots+q r^{n}\right)-\left(a r+a r^{2}+\ldots+a r^{n}+a r^{n+1}\right)
$$

so, $\quad s_{n}=a\left(1-r^{n+1}\right) /(1-r)$
Since $|r|<1$ imples $r^{n} \rightarrow 0$ and so the result follows. If $|r|>1$, clearly $r^{n} \rightarrow \infty$ and it diverges.
If $r=1, S_{n}=\underbrace{a+a+a \cdots+a}_{n-\text { times. }}=n a \rightarrow \infty$

$$
s=\frac{a}{1-r}
$$

If $r=-1, s_{n}=a-a+a-\ldots$ which oscillates.

Example.
Lets analyze the infin series $9-\frac{27}{5}+\frac{81}{25}-\frac{243}{125}+\ldots$
Does it converge? Fist realje that it a geometric series. The parameter are:

$$
a=9, \quad r=\frac{3}{5} \text { or }-\frac{3}{5}
$$

Since the sign alternates, $r=-\frac{3}{5}$.
Since $|r|<1$, it converges and the sum equals.

$$
\frac{a}{1-r}=\sum_{i=1}^{n} g \cdot\left(\frac{-3}{5}\right)^{n-1}=\frac{9}{1-\left(-\frac{3}{5}\right)}=\frac{45}{8}
$$

Example
Calculate $\sum_{n=1}^{\infty} \frac{4^{n}+5^{n}}{9^{n}} \quad \sum_{n=1}^{\infty} a r^{n-1} \quad \frac{a+b}{c}=\frac{a}{c}+\frac{b}{c}$
Soln Let's use property of infinit seris to simpl f :

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{4^{n}+5^{n}}{9^{n}} & =\sum_{n=1}^{\infty} \frac{4^{n}}{9^{n}}+\sum_{n=r}^{\infty} \frac{5^{n}}{9^{n}} \\
& =\sum_{n=1}^{\infty} \frac{4}{9}\left(\frac{4}{9}\right)^{n-1}+\sum_{n=1}^{\infty} \frac{5}{9}\left(\frac{5}{9}\right)^{n-1} \\
& =\frac{4 / 9}{1-4 / 9}+\frac{5 / 9}{1-5 / 9} \\
& =\frac{4}{5}+\frac{5}{4} \\
& =\frac{41}{40} .
\end{aligned}
$$

Example.
Calculate. $\sum_{n=0}^{\infty} \frac{3^{n}}{8^{2 n+1}} \quad \sum_{n=1}^{\infty} a r^{n-1}$
fagin, hits ur $\sum_{n=0}^{\infty} c a_{n}=c \sum_{n=0}^{\infty} a_{n}$.
So, $\sum_{n=0}^{\infty} \frac{3^{n}}{8^{2 n+1}}=\sum_{n=0}^{\infty} \frac{1}{8} \cdot \frac{3^{n}}{8^{2 n}}=\frac{1}{8} \sum_{n=0}^{\infty}\left(\frac{3}{8^{2}}\right)^{n}$
So, $\sum_{n=0}^{\infty}\left(\frac{3}{64}\right)^{n}=\frac{1}{1-3 / 64}=\frac{64}{61}$
and putting it all together: $\frac{1}{8} \sum_{n=0}^{\infty}\left(\frac{3}{8^{2}}\right)^{n}=\frac{1}{8} \cdot \frac{64}{61}=\frac{8}{61}$

Telescoping infinite series.
A second type of infinite series that is easy to analyze is a telescoping infinite series, which has the general form

$$
\left.S=\sum_{n=1}^{\infty}\left(a_{n}-a_{n+1}\right)=\left(a_{1}-\alpha_{2}\right)+\left(a_{2}-\alpha_{3}\right)+\cos 3-\alpha_{n}\right)+\ldots
$$

ohm: Suppose $S=\sum_{n=1}^{\infty}\left(a_{n}-a_{n+1}\right)$ with $\lim _{n \rightarrow \infty} a_{n}=L$. Then $S=a_{1}-L$ and so S is convergent.

Example.

If it converges find the sum.
Son: Let's orite out a fou of the partial sum:

$$
\begin{aligned}
& s_{1}=\frac{1}{2} \\
& s_{2}=\frac{1}{2}+\frac{1}{6}=\frac{4}{6}=\frac{2}{3} \\
& s_{3}=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}=\frac{9}{12}=\frac{3}{4} \\
& \quad \vdots \\
& s_{n}=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\cdots+\frac{1}{n(n+1)}=\frac{n-1}{n} \rightarrow 1
\end{aligned}
$$

$$
\left\{\frac{1}{n(n+1)}\right\}=\left\{\frac{1}{2}, \frac{1}{6}, \frac{1}{12}, \ldots\right\} \quad \text { sine } \quad \frac{1}{n} \rightarrow 0
$$

Example (Contd.)
Again, lets lookat $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ using partial fraction: $\frac{1}{n(n+1)}=\frac{A}{n}+\frac{B}{n+1}=\frac{1}{n}-\frac{1}{n+1}$
so, $S_{n}=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\ldots+\left(\frac{1}{n}+\frac{1}{n+1}\right)$

$$
=1-\frac{1}{n+1}
$$

So,

$$
\begin{aligned}
s_{n}=\sum a_{n}-a_{n+1} & =a_{1}-L \\
& =1
\end{aligned}
$$

Example
Discuss convergence of $\sum_{n=1}^{\infty} \log \left(1+\frac{1}{n}\right)$
we con write the infinite series as:

$$
\begin{aligned}
& \text { write the infinite series os: } \\
& \sum_{n=1}^{\infty} \log \left(\frac{n_{t}}{n}\right)=\sum_{n=1}^{\infty}(\log (n+1)-\log (n))
\end{aligned}
$$

which looks like telescoping sum but we must be carpal:

$$
\begin{aligned}
S_{n} & =\log (n+1)-\log (n)+\log (n)-\log (n-1)+\ldots-\log (1) \\
& =\log (n+1)-\log (1) .
\end{aligned}
$$

So the series diverges as $\log (n t t) \rightarrow \infty \operatorname{csn} \rightarrow \infty$. In our example, $a_{n}=\log (n)$ which does not ran'sh.

