Absolute and conditional convergence: _ bn = 1 Recall that $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ converges by alternating series test but In diveges by integral test. Also, observe that $\sum_{n=1}^{\infty} \binom{-1}{n^2} \prod_{n=1}^{\infty} \binom{-2}{n^2} \prod$ Definition Consider the series $\sum a_n$. I. If $\sum_{n=1}^{\infty} |a_n|$ converges then we say the series Zan is absolutely convergent I. If the suries $\sum_{n=r}^{\infty} |a_n|$ is divergent but $\sum_{n=r}^{\infty} a_n$ is conditionally convergent;

Comparision test:
A key property we established in comparision tot was:
Theorem: If
$$\sum_{n=r}^{\infty} |a_n|$$
 is convergent, then $\sum_{n=r}^{\infty} a_n$
is also convergent: $a_n \leq |a_n|$
 $proof ida:$ let $S_N = \sum_{n=r}^{N} a_n$ and $T_N = \sum_{n=r}^{N} |a_n|$.
() $T_N - S_N$ is bounded bone by $2T_N < \infty$
() $T_N - S_N \geq 0$ $\forall N = monotonic$.
So, By Morotonic Convergence theorem $T_N - S_N$ is convergence
 $low T_N < \infty$

Ratio test. A key test for absolute convergence of a series song Zon is the ratio test. and assume an =0 $\frac{Ihm}{Ihm}: Let N>0 be an integer$ $for all <math>n \ge N$. Then $(I) If \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L \leq 1, we have \sum_{n=1}^{\infty} |a_n|$ converges (and so does $\sum_{n=1}^{\infty} o_n$) $\begin{array}{c|c} \hline \hline \\ \hline \\ \hline \\ \hline \\ n \rightarrow \infty \end{array} \left| \begin{array}{c} \frac{\partial n+i}{\partial n} \right| = L \right| \\ \hline \\ \hline \\ n \rightarrow \infty \end{array} \right| \begin{array}{c} \frac{\partial n+i}{\partial n} \right| = 0 \\ \hline \\ \hline \\ \hline \\ \hline \\ n \rightarrow \infty \end{array} \left| \begin{array}{c} \frac{\partial n+i}{\partial n} \right| = 0 \\ \hline \\ \hline \\ \hline \\ \hline \\ n \rightarrow \infty \end{array} \right|$ $\sum_{n=1}^{\infty} a_n diverges. \left(\sum_{n=1}^{\infty} |a_n| dso \right)$

Ratio test
Remork:
a. Ratio test is useful when the series has exponent n,
factorials, e.t... like

$$\sum_{n=1}^{\infty} \frac{n \cdot 2^n}{5^n} \cdot \sum_{n=1}^{\infty} \frac{e^n}{n!} \cdot \sum_{n=1}^{\infty} \frac{n^2 \cdot e^n}{4^n}, e^{tx}.$$
b. It turns at ratio test is not as useful for series of
the form $\sum_{n=1}^{\infty} \frac{P(n)}{8(n)}, P(n) \notin Q(n)$ are polynomial in n.
c. In (1), If L<1, then $\sum_{n=1}^{\infty} a_n$ is absolutely convergent:

$$\sum_{n=1}^{\infty} 10n!$$

Remark (control) 2° 10nl d. In (2), the socies is not absolutely convergent. But $\sum_{n=1}^{\infty}$ an could be convergent, i.e $\sum_{n=1}^{\infty}$ and could be convergent. e. Important There is no conclusion if $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$ (i.e. L=1). Then $\sum_{n=r}^{\infty} |a_n| may or may not be convergent.$ Further test is required.

Proof orthine of verto test in
$$|\frac{\partial n+1}{\partial n}| = L$$

We first prove O . Since $L < 1$, we can prick a RER
Had satisfy $0 < L < R < 1$. Then there exists M so that
for all $n \ge M$ we have $|\frac{\partial n+1}{\partial n}| < R$ because
 $|\frac{\partial n+1}{\partial n}| \rightarrow L$ as $n \ge \infty$.
Thus, $|\partial n+1| < R|a_n|$ for all $n \ge M$.
 $Ia_{M+1}| < R|a_M|$
 $|a_{M+2}| < R|a_M|$
 $|a_{M+2}| < R|a_M|$
Then $\sum_{p=1}^{\infty} |a_{M+p}| < \sum_{p=1}^{\infty} R^{p}|a_{M}| = \sum_{p=1}^{\infty} |a_{M}| RR^{p+1} = \frac{|a_{M}|R}{1-R} < \infty$

-

$$\begin{array}{c} \begin{array}{c} proof (codd) \\ so, \quad & \sum \limits_{p=1}^{n} |a_{N+p}| < \infty \quad and \quad & \sum \limits_{n=M+1}^{n} |a_{n}| \quad converges. \\ \end{array}{0} \\ \begin{array}{c} so, \quad & \sum \limits_{p=1}^{p=1} |a_{n}| = \frac{N}{2} |a_{n}| + \frac{2}{2} |a_{n}| < \infty & \text{This proves (1)} \\ \end{array}{0} \\ \hline \\ \begin{array}{c} n = 1 \\ \hline \\ n = 1 \\ \end{array}{0} \\ \hline \\ n = 1 \\ \end{array} \\ \begin{array}{c} n = 1 \\ \end{array} \\ \begin{array}{c} n = 1 \\ \hline \\ n = 1 \\ \end{array} \\ \begin{array}{c} n = 1 \\ \end{array} \\ \end{array} \\ \begin{array}{c} n = 1 \\ \end{array} \\ \begin{array}{c} n = 1 \\ \end{array} \\ \end{array} \\ \begin{array}{c} n = 1 \\ \end{array} \\ \end{array} \\ \begin{array}{c} n = 1 \\ \end{array} \\ \end{array} \\ \begin{array}{c} n = 1 \\ \end{array} \\ \end{array} \\ \begin{array}{c} n = 1 \\ \end{array} \\ \begin{array}{c} n = 1 \\ \end{array} \\ \end{array} \\$$

Example 1
Consider
$$\sum_{n=1}^{\infty} (-1)^n + where a_n = (-1)^n + \frac{1}{n}$$

By altomating series test $\sum_{n=1}^{\infty} a_n$ converges.
But we have $\sum_{n=1}^{\infty} |0_n| = \sum_{n=1}^{\infty} \frac{1}{n}$ diverges. So,
by our definition we conclude that $\sum_{n=1}^{\infty} a_n$ is
conditionally convergent $\sum_{n=1}^{\infty} a_n$ is $\sum_{n=1}^{\infty} a_n$ is
 $\lim_{n \to \infty} |\frac{a_{n+1}}{a_n}| = \lim_{n \to \infty} \sum_{n=1}^{\infty} a_n$ is $\sum_{n \to \infty} a_{n+1}$ is $\sum_{n \to \infty} a_{n+1}$ is $\sum_{n \to \infty} a_{n+1}$ is $\sum_{n \to \infty} a_{n+1}$.

Example 2 Consider $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^2}$ where $a_n = (-1)^n \frac{1}{n^2}$ By alternating series trest, we know that $\sum_{n=1}^{\infty}$ an converges. By integral test, we know that $\sum_{n=1}^{\infty} |a_n|$ converges. So, by definition we say that $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (H) \frac{1}{n^2}$ is absolutely convergent.

Example

Solⁿ (9) First check $\sum_{n=1}^{\infty} |\alpha_n| = \sum_{n=1}^{\infty} \frac{n}{n^2+1}$. By comparision limit last (compare to $\frac{1}{n}$), we have that $\sum_{n=1}^{lan}$ is divergent So, Zionlis not absolutely convergent Now, check $\sum_{n=1}^{\infty} (-1)^n b_n$, where $b_n = \frac{n}{n^2 + 1}$ Notice that b_n is decreasing for large n and $b_n > 0$ with $b_n \rightarrow 0$. Thus, by alternating test $\sum_{n=1}^{\infty} (-1)^n b_n$ is convergent Hence, $\sum_{n=1}^{\infty} (-i)^n n$ is conditionally convergent.

Z c-10^h 1 h h n an bn Example $\bigcirc \sum_{n=1}^{\infty} (-1)^n \left(\frac{n^2 + 1}{n^4 + 5} \right)$ $S_{0}^{n} = 1 \qquad n^{4} + 5 / S_{0}^{\infty} = 1 \qquad n^{2} = 1 \qquad n^{2} = 1 \qquad n^{2} + 1 \qquad n^{2} = 1 \qquad n^{2} =$ Since $\frac{n^2+1}{n^4+5} \approx \frac{1}{n^2}$ for large n, we expect convergence. (et $b_n = \frac{1}{n^2}$. Notice that $b_n > 0$ $\forall n$. Bend $\lim_{n \to \infty} \frac{n^2 + 1}{n^4 + 5}$ $n^2 = \lim_{n \to \infty} \frac{n^4 + n^2}{n^4 + 5} = 1$ Since limit exists and $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent, $\sum_{n=1}^{\infty} \frac{n^2+1}{n^4+5}$ is convergent by limit comparison test So, $\sum_{n=1}^{\infty} (-1)^n \frac{n^2+1}{n^4+5}$ is absolutely convergent.

$$\frac{\mathcal{E}_{rample}}{(1) \sum_{n=1}^{\infty} (-1)^{n} n e^{-n^{2}}} \text{ with } a_{n} = (-1)^{n} n e^{-n^{2}} \sum_{n=1}^{\infty} n e^{-n^{2}}$$

$$\frac{\mathcal{S}_{ol}}{(1) \sum_{n=1}^{\infty} (-1)^{n} n e^{-n^{2}}} \int_{n=1}^{\infty} n e^{-n^{2}} \int_{n=1}^{\infty} \frac{1}{(1 - 1)^{n}} \frac{1}{(1 - 1)^{n}} \int_{n=1}^{\infty} \frac{1}{(1 - 1)^{n}} \frac{1}{(1 - 1)^{n}}$$

$$\frac{\text{Example}}{\left(\bigcirc \sum_{n=1}^{\infty} \frac{n \sin(n)}{n^3 + 1} \right)} \xrightarrow[n=1]{\left(\bigcirc \frac{n \sin(n)}{n^3 + 1} \right)} \xrightarrow[n=2]{\left(\bigcirc \frac{n \cos(n)}{n^3 + 1}$$

Example.

We can we sraple companison tot:
Notice
$$|\sin n| < 1$$

so, $0 < \left| \frac{n \sin n}{n^2 + 1} \right| < \frac{n}{n^3 + 1}$
we know $\sum_{n=1}^{\infty} \frac{n}{n^3 + 1}$ converges by integral tot
we get that $\sum_{n=1}^{\infty} \left| \frac{n \sin n}{n^3 + 1} \right|$ converges by componision
test: So, $\sum_{n=1}^{\infty} \frac{n \sin n}{n^3 + 1}$ is absolutely convergent: