Application of integration.
Work. Energy expended acting against a force.
g: energy expended moving a weight against growity.
Definition: • Time t - measured in seconds.
• Mass m - measured in kg.
• position s - measured in metals
New ton's second low of motion.
Force = mass x acceleration i.e.
$$f=m\frac{ds}{dt^2}$$

New ton = kg m/s².
Work at constant force
Work = Force x displacement = F x d
Joules = Nm

Sugtim (constant Force) from floor 1 kg book How much work done moving a to top of 2m high shelf? Displacement = 2m acederation due to gravity = 9.8 m/2 Hoor Force = m.a= g.8 N $Work = F \cdot d = 19 \cdot 6 J$

Easy !

Variable force
F(x) is the force acting at position
$$x$$
.
The force acting at position x .
The force $x_{1} > F(x_{2}) > F(x_{2})$
Use Riemann sum to approx. work done to more
from $x = a$ to $x = b$.
 o n sub-intowals $[x_{i-1}, x_{i}]$, $x_{i} = a + i (b^{-a})$
 n
 o Constant force $[x_{i-1}, x_{i}]$, $F(x_{i}^{*})$
 o Approximate work, $R_{n} = \sum_{i=1}^{n} F(x_{i}^{*}) \Delta x$.
 $W = F(b^{-a})$
 o Work = $\int_{a}^{b} F(x) dx$

Question (voriable force) Vorying Force = K·x K- spring constant x - a mount of stretching. A spring has a natural long th of 20cm. If a 25 N force is required to keep it stretched at a long th of 30 cm, how much work is required to stretch it from 20 cm to 25 cm? $F = k \cdot x \Rightarrow 25 = k(0 \cdot 3 - 0 \cdot 2)$ o Spring constant: 0 $Work = \int_{0}^{0.05} F(z)dz = \int_{0}^{0.05} 250 z dz = \frac{125z^2}{0} = 0.313J$

Example

A chain lying on the ground is 10 m long and weights 80 kg. How much work is required to raise one end of the chain to height of 6m? The constant density of the 8Kg/m. chain is 6m \$ 9 10m -

Riemann sum: split chain into segments [xi, xi] and figure out how much work is done in lifting each segment: segment.

ionside segment
$$[z_{i+}, z_{i}]^{i}$$

o Piece of chain at z is
lifted to $6-z$ m. Honce.
Segment $[z_{i+}, z_{i}]$ is lifted
to $6-z_{i}^{*}$ m.
o mass = donsity $\delta x = 8 \delta x$
o Segment experiences $(8 \delta x) \cdot 9 \cdot 8 = 78 \cdot 4 \delta x$ force.
o Riemann sum : $R_{n} = \sum_{i=1}^{n} (6-z_{i}^{*}) \cdot 78 \cdot 4 \delta x$
o $n \rightarrow \infty$: $W = 78 \cdot 4 \int_{0}^{\infty} (6-x) dx = 78 \cdot 4 \left[6z - \frac{x^{2}}{2} \right]_{0}^{0}$
 $= \overline{(4H \cdot 2 J)}$
check.

Example What if the chain was dongling from the roof and we were to lift the far end? o het x be the distonce • A piece of chain is more 2x. So, Riemonn sum is $W \approx \sum 2z^* 784 \Delta x$ 6m 1=1 SO, work done is $W = \int_{-1}^{6} \frac{156 \cdot 8 \, x \, dx}{156 \cdot 8 \, x \, dx} = \frac{156 \cdot 8 \, \frac{x^2}{2}}{2} \Big|^{\frac{1}{2}}$ = 156.8 x 18 = 2822.4 J.

Example

A tonk shaped like invested core of height 10m and radius 4m is filled to height of 8m. Assume dans, ty of water is 1000 kg/m3. Find work of pumping all water out of tonk. Work for each slice of water o moiss = volume x donsity $\Delta m = mass in slice$ $= \pi(r(x))^2 \Delta x \times 1000$ r(z) is radius of cross. section at z 8m posi tion $\Upsilon(\chi) = \frac{2}{5}\chi$ ofvata ◦ Force acting on slice of water F= 9.8 sm h_a ∑ r_a/r_a/ $h_{3} \begin{cases} \frac{v_{2}}{v_{2}} & \frac{v_{1}}{v_{2}} & \frac{v_{1}}{v_{2}} \\ \frac{v_{2}}{v_{2}} & \frac{v_{1}}{v_{2}} & \frac{v_{1}}{v_{2}} \end{cases}$

• Work for slive:
$$\Delta \omega = (10-x) 9.8 \Delta m$$

= (10-x) $9.8 \pi \left(\frac{4}{25} x^2\right) \Delta x$ 1000
So, $\omega \approx \sum_{i=1}^{n} (10-x) 9.8 \pi \left(\frac{4}{25} x^2\right) 1000 \Delta x$
=> $\omega = \frac{9.8 \pi \times 1000 \times 4}{25} \int_{0}^{8} (10-x) x^2 dx$
= $3:36 \times 10^{6}$ Toulor:

10-X X

0

Work and Energy Assume we are moving against a force, F(x). Assume position is given by x(t), where t is time. Assume position $f(x) = \int_{\alpha}^{b} F(x) dx = \int_{\alpha}^{t=\beta} F(x(t)) \frac{dx}{dt} dt$. Work done = $\int_{\alpha}^{b} F(x) dx = \int_{t=\alpha}^{t=\beta} F(x(t)) \frac{dx}{dt} dt$. By F=ma: $Wak dove = \int_{\alpha}^{\beta} m \frac{d^{2}x}{dt^{2}} \frac{dx}{dt} dt = m \int_{\alpha}^{\beta} v'(t) v(t) dt$ $Work dove is difference = m \int_{\alpha}^{\beta} \frac{d}{dt} \left(\frac{1}{2}v(t)^{2}\right) dt$ in kinetic energy $= m \int_{a}^{b} \frac{d}{dt} \left(\frac{1}{2} v(t)^{2} \right) dt$ $= m \left[\frac{1}{2} v(t) \right]_{\alpha}^{\beta}$ x(d)=a $= \frac{1}{2} m v (\beta)^2 - \frac{1}{2} m v (\alpha)^2$ $x(\beta) = b$

Kinetic energy.

 $\int_{a}^{b} f(x) dx.$

x(a) = a $\mathcal{N}(\beta) = b$

