Application of integration.
Work. Energy expended acting againts a force.
g: energy expended moving a weight against gravity.
Definition: 0 Time t - measured in seconds.

- Mass m - measured in kg .
- position s - measured in meters

Nevtoris second low of motion.

$$
\begin{aligned}
& \text { second low of motion } \quad \text { ie. } F=m \frac{d^{2} s}{d t^{2}} \\
& \text { Force }=\text { mass } \times \text { acceleration }
\end{aligned}
$$

$$
\text { Newton }=k g m / s^{2}
$$

Work at constant force

$$
\begin{gathered}
\text { Work }=\text { Force } \times \text { displacement }=F \times d \\
\text { Joules }=\mathrm{Nm}
\end{gathered}
$$

Question (Constant Force)
How much work done moving a 1 kg book from floor to top of 2 m high shelf?

Displacement $=2 \mathrm{~m}$
acceleration due to gravity $=9.8 \mathrm{~m} / \mathrm{s}^{2}$

$$
\begin{aligned}
& \text { Force }=m \cdot a=9.8 \mathrm{~N} \\
& \text { Work }=F \cdot d=19.6 \mathrm{~J} .
\end{aligned}
$$

Easy!
variable force
$F(x)$ is the force acting at position x.

Use Riemann sum to approx. work done to move from $x=a$ to $x=b$.

- n subintavals $\left[x_{i-1}, x_{i}\right], x_{i}=a+\frac{(b-a)}{n}$
- Constant force $\left[x_{i-1}, x_{i}\right], F\left(x_{i}^{*}\right)$
- Approximate work, $R_{n}=\sum_{i=1}^{n} F\left(x_{i}^{*}\right) \Delta x$.

$$
\omega=F(b-a) \text { o } W_{\text {or k }}=\int_{a}^{b} F(x) d x
$$

Question (variable force)

Mokes law
Force $=k \cdot x$
k - spring constant
x - a mount of stretching.
A spring has a natural length of 20 cm . If a 25 N force is required to keep it stretched at a lang th of 30 cm , how much work is required to stretch it from 20 cm to 25 cm ?

- Spring constant: $F=k \cdot x \Rightarrow 25=k(0.3-0.2)$
- Work $=\int_{0}^{0.05} F(x) d x=\int_{0}^{0.05} 250 x d x=k=250 \mathrm{~N} / \mathrm{m}$.

Example
A chain lying on the ground is 10 m long. and weight 80 kg . How much work is required to raise one end of the chain to height of 6 m ? The constant density of the chain is $8 \mathrm{~kg} / \mathrm{m}$.

Riemann sum: split chain into segments $\left[x_{i-1}, x_{i}\right]$ and figure out how much work is done in lifting each segment.

Consider segment $\left[x_{i-1}, x_{i}\right]$:

- Piece of chain at x is lifted to $6-x \mathrm{~m}$. Hence.
segment $\left[x_{i-1}, x_{i}\right]$ is l ital
to $6-x_{i}^{*} \mathrm{~m}$.

0 mass $=$ density $\cdot \Delta x=8 \Delta x$

- Segment experiences $(8 \Delta x) \cdot 9 \cdot 8=78.4 \Delta x$ force.
- Riemann sum: $R_{n}=\sum_{i=1}^{n}\left(6-x_{i}^{*}\right) 78.4 \Delta x$
$0 n \rightarrow \infty: \omega=78.4 \int_{0}^{6}(6-x) d x=78.4\left[6 x-\frac{x^{2}}{2}\right]_{0}^{6}$

$$
=144.2 \mathrm{~J}
$$

check.

Example.
What if the chain was dangling from the roof and we were to lift the far end?

- Let x be the distance

So, work done is

$$
\begin{aligned}
0, \text { work done is } \\
\begin{aligned}
w=\int_{0}^{6} 156.8 x d x & =\left.156.8 \frac{x^{2}}{2}\right|_{0} ^{6} \\
& =156.8 \times 18 \\
& =2822.4 \mathrm{~J}
\end{aligned}
\end{aligned}
$$

Example
A tank shaped like inverted cone of height 10 m and radius 4 m is filled to height of 8 m . A ssume density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$. Find work of pumping all water out of tank.

Work fo reach slice of water:

$$
\begin{aligned}
\circ \text { mass } & =\text { volume } \times \text { density } \\
\Delta m & =\text { mass in slice } \\
& =\pi(r(x))^{2} \Delta x \times 1000
\end{aligned}
$$

$r(x)$ is radius of cross section at x

$$
r(x)=\frac{2}{5} x .
$$

- Force acting on slice of water

$$
F=9.8 \mathrm{sm}
$$

$$
\left\{\begin{array}{l}
n_{1}=\sqrt[r_{1}]{r_{2}} \frac{r_{1}}{r_{2}}=\frac{n_{1}}{n_{2}}
\end{array}\right.
$$

- Work for slice: $\Delta \omega=(10-x) 9.8 \Delta m$

$$
\begin{aligned}
& =(10-x) 9 \cdot 8 \Delta 10-x) g \cdot 8 \pi\left(\frac{4}{25} x^{2}\right) \Delta x 1000
\end{aligned}
$$

So, $\omega \approx \sum_{i=1}^{n}(10-x) 9 \cdot 8 \pi\left(\frac{4}{25} x^{2}\right) 1000 \Delta x$

$$
\begin{aligned}
\Rightarrow \omega & =\frac{9.8 \pi \times 1000 \times 4}{25} \int_{0}^{8}(10-x) x^{2} d x \\
& =3.36 \times 10^{6} \text { Joules. }
\end{aligned}
$$

Work and Energy
Assume we are moving against a for $e, F(x)$.
Assume position is given by $x(t)$, where t is time.

$$
\text { Work dore }=\int_{a}^{b} F(x) d x=\int_{t=\alpha}^{t=\beta} F(x(t)) \frac{d x}{d t} d t \text {. }
$$

By $F=m a:$

$$
\begin{aligned}
& \text { F -ma: } \\
& \text { Work dore }=\int_{\alpha}^{\beta} m \frac{d^{2} x}{d t^{2}} \cdot \frac{d x}{d t} \cdot d t=m \int_{\alpha}^{\beta} v^{\prime}(t) v(t) d t . \\
& \text { Work done in diterenco }
\end{aligned}
$$

Work done is difference in kinetic energy

$$
\begin{aligned}
& x(\alpha)=a \\
& x(\beta)=b
\end{aligned}
$$

$$
\begin{aligned}
& =m \int_{\alpha}^{\beta} \frac{d}{d t}\left(\frac{1}{2} v(t)^{2}\right) d t \\
& =m\left[\frac{1}{2} v(t)\right]_{\alpha}^{\beta} \\
& =\underbrace{\frac{1}{2} m v(\beta)^{2}}-\frac{1}{2} m v(\alpha)^{2}
\end{aligned}
$$

$$
\int_{a}^{b} f(x) d x . \quad \begin{aligned}
& x(\alpha)=a \\
& x(\beta)=b .
\end{aligned}
$$

let

