$0 \int_{-a}^{a}\left(x^{7} \cos (x) e^{x^{2}}+10\right) d x$
$\int_{0}^{x} \frac{t^{2}-4}{1+x^{2}} d x$

Application of integration. Section 2.1
Work. Energy expended acting ageints a force.
g: energy expended moving a weight against gravity. Nevtoris secund law of motion.

$$
\begin{aligned}
& \text { second low of motion } \\
& \text { Force }=\text { mass } \times \text { acceleration } \quad \text { ie. } F=m \frac{d^{2} s}{d t^{2}}
\end{aligned}
$$

Work at constant force

$$
\text { Work }=\text { Force } \times \text { displacement }=F \times d
$$

Work at varying force:

$$
\omega=\int_{a}^{b} F(x) d x
$$

Example
A leaky bucket weighing 5 N is lifted 20 m into the air at constant speed. The bucket starts with $2 N$ of veter and leaks at constant rate. It finished draining vino as it reaches the top. How much work was dove lifting the water alone?

$$
q \downarrow
$$

$$
\omega=\int f(x) d x
$$

Example 1.
At height x, what is the weight of water in bucket.

$$
F(x)=\frac{-1}{10} x+2 \mathrm{~N}
$$

$$
\begin{aligned}
& w \approx \sum_{i=1}^{n} F\left(x_{i}^{*}\right) \Delta x \\
& w=\int_{0}^{20} F(x) d x
\end{aligned}=\int_{0}^{20}\left(-\frac{1}{10} x+2\right) d x .
$$

Example
A took of dimension shown (see figure) is in tidally full of water. The density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$.
Find the work required to pump water out of the spout.

mass of slab of water at depth y.

Example cont d.

$$
\begin{aligned}
& \text { Example contd. } \\
& \text { work done to move } \Delta \text { water at depth } y: \begin{aligned}
\Delta v & =\pi r^{2} \Delta y=\pi\left(6 y-y^{2}\right) \Delta y \\
\Delta m & =\Delta v \cdot 1000=1000 \pi\left(6 y-y^{2}\right) \Delta y \\
\Delta F & =9800 \pi\left(6 y-y^{2}\right) \Delta y \\
\Delta w & =(y+1) 9800 \pi\left(6 y-y^{2}\right) \Delta y . \\
\omega & =\int_{0}^{6}(y+1) 9800 \pi\left(6 y-y^{2}\right) d y \\
& =9800 \pi \int_{0}^{6}\left(6 y^{2}-y^{3}+6 y-y^{2}\right) d y \\
& =9800 \pi\left[\frac{5 y^{3}}{3}-\frac{y^{4}}{4}+\frac{6 y^{2}}{2}\right]_{0}^{6} \approx 4.4 \times 10^{6} \text { Joules. }
\end{aligned}
\end{aligned}
$$

Volume Section 1.6
Goal:: 0 find area enclosed by a 3-D surface.

- Rotate a carve about a lie to get the 3-D surface.

Let $y=f(x)$.

Find the enclosed area between $x=a$ and $x=b$.

Setip-Riemann sum.

- Split $[a, b]$ into $\left[x_{i-1}, x_{i}\right]$ sub-intovals.
- For each $\left[x_{i-1}, x_{i}\right]$, approximate volume with cylinder.
radius of a cylindrical slice $=f\left(x_{i}^{*}\right)$

$$
\text { width }=\Delta x \text {. }
$$

So, $V_{i}=\pi f\left(x_{i}^{*}\right)^{2} \Delta x \quad, \quad V_{i}=A\left(x_{i}^{*}\right) \cdot \Delta x$

Setup - Riemann sum $($ contd. $)$

- Riemann sum.

$$
\begin{aligned}
V & =\sum_{i=1}^{\text {sum }} \pi\left(f\left(x_{i}^{N}\right)\right)^{2} \Delta x \\
& =\sum_{i=1}^{n} g(x) \Delta x, \quad g(x)=\pi\left(f\left(x_{i}\right)\right)^{2}
\end{aligned}
$$

- limit as $n \rightarrow \infty$.

$$
V=\int_{a}^{b} g(x) d x
$$

more generally:

$$
V=\int_{a}^{b} A(x) d x
$$

Example (Volume of cone)
Consider the lie $y=\frac{x}{2}$ on $[0,6]$.
Rotate about x-axis and compute the enclosed volume.

$$
\begin{aligned}
V & =\int_{0}^{6} \pi\left(\frac{x}{2}\right)^{2} d x \\
& =\int_{0}^{6} \pi \frac{x^{2}}{4} d x \\
& =\left.\frac{\pi}{4} \frac{x^{3}}{3}\right|_{0} ^{6} \\
& =18 \pi
\end{aligned}
$$

more generally:

$$
\begin{aligned}
V & =\int_{0}^{b} \pi \frac{x^{2}}{4} d x \\
& =\frac{\pi b^{3}}{12}=\frac{1}{3} \pi \cdot\left(\frac{b}{2}\right)^{2} \cdot b .
\end{aligned}
$$

Example
Let $y=\sqrt{r^{2}-x^{2}}$ (semi circle of radius r)
Find the enclosed vole (rotate about x-axis).

$$
\pi\left(f\left(x_{i}^{p}\right)^{2} \Delta x\right.
$$

$$
\pi \int_{-r}^{r}\left(\sqrt{r^{2}-x^{2}}\right)^{2} d x
$$

$$
\int_{a}^{b} \pi(f(x))^{2} d x
$$

$$
\pi \int_{-r}^{r}\left[r^{2}-x^{2}\right] d x=\pi\left[r^{2} x-\frac{x^{3}}{3}\right]_{-r}^{r}
$$

$$
=\pi\left[r^{3}-\frac{r^{3}}{3}+r^{3}-\frac{r^{3}}{3}\right]=\frac{4}{3} \pi r^{3}
$$

Example (volume of boo l).
Let

$$
\begin{aligned}
& f(x)=\sqrt{3-3 x} \\
& g(x)=\sqrt{1-x^{2}}
\end{aligned}
$$

Find the volume of the bowl.
$\rightarrow \frac{1}{9(x)}=$

$$
\begin{aligned}
& V_{1}=\pi \int_{0}^{1} f(x)^{2} d x, V_{2}=\pi \int_{0}^{1} g(x)^{2} d x \\
& V=\pi \int_{0}^{1}\left(f(x)^{2}-g(x)^{2}\right) d x<\text { like area be } \\
& \text { the aves. } \\
&=\pi \int_{0}^{1}\left((3-3 x)-\left(1-x^{2}\right)\right) d x \\
&=\pi\left[3 x-\frac{3 x^{2}}{2}-x+\frac{x^{3}}{3}\right]_{0}^{1}=\frac{5}{6} \pi
\end{aligned}
$$

$$
\begin{aligned}
& \text { like area between } \\
& \text { the curves. }
\end{aligned}
$$

Example 4
Find volume of intersection of 2 perpendialar cones. cylider 1: $x^{2}+z^{2} \leqslant 1 \rightarrow$ abate y-axis. cylinder 2: $y^{2}+z^{2} \leq 1 \rightarrow$ about x-axis.
For a fixed z :
cylinda 1:

$$
\begin{aligned}
& x^{2} \leq 1-z^{2} \\
\Rightarrow-\sqrt{1-z^{2}} & \leq x \leq \sqrt{1-z^{2}}
\end{aligned}
$$

coo lineler 2:

$$
\begin{aligned}
& \text { 2: } \quad y^{2} \leq 1-z^{2} \\
& -\sqrt{1-z^{2}} \leq y \leq \sqrt{1-z^{2}}
\end{aligned}
$$

For a fixed z, we get a square of length $2 \sqrt{1-z^{2}}$

Example 4 (contd.)
Volume of slab: $\quad\left(2 \sqrt{1-z^{2}}\right)^{2} \cdot \Delta z$

$$
\begin{aligned}
V & =\int_{-1}^{1}\left(2 \sqrt{1-z^{2}}\right)^{2} d z \\
& =4 \int_{-1}^{1}\left(1-z^{2}\right) d z \quad \Rightarrow \quad y^{2} \leqslant a, a \geqslant 0 \\
& =4\left[z-\frac{z^{3}}{3}\right]_{-1}^{1} \\
& =\frac{16}{3}
\end{aligned}
$$

