Quiz 2 solutions

Pulkit Gandhi

Solution 2:

We need to find the area between the curves $x=y^{2}-2$ and $x=e^{y}$ assuming a small segment dy along the y-axis.
\therefore Required area $=$ Red area - Blue area

$$
\begin{gathered}
\Longrightarrow \text { area }=\int_{-1}^{1}\left(e^{y}-y^{2}+2\right) \mathrm{d} y \\
\Longrightarrow \text { area }=\left.\left(e^{y}-\frac{y^{3}}{3}+2 y\right)\right|_{-1} ^{1} \\
\Longrightarrow \text { area }=e-\frac{1}{e}+\frac{10}{3}
\end{gathered}
$$

which is the final answer.

Solution 3:

The goal is to find the volume of liquid needed to fill a sphere of radius R to the height of $\frac{R}{3}$. Let us consider a thin horizontal disc of radius r at height y as shown in the figure.

$$
\therefore \text { the volume will be } V=\int_{0}^{\frac{R}{3}} A(y) d y
$$

where $A(y)$ is the area of the disc at height y .
Since area is just πr^{2}, therefore, we need to know r (which changes with y). Using Pythagorean Theorem,

$$
R^{2}=r^{2}+(R-y)^{2} \Longrightarrow r^{2}=R^{2}-(R-y)^{2}=2 R y-y^{2}
$$

and hence $A(y)=\pi\left(2 R y-y^{2}\right)$. Therefore, the volume needed to fill the sphere to height $\frac{R}{3}$ is

$$
V=\int_{0}^{\frac{R}{3}} A(y) d y=\pi \int_{0}^{\frac{R}{3}}\left(2 R y-y^{2}\right) d y=\left.\pi\left(R y^{2}-\frac{y^{3}}{3}\right)\right|_{0} ^{\frac{R}{3}}=\pi\left(\frac{R^{3}}{9}-\frac{R^{3}}{81}\right)=8 \pi \frac{R^{3}}{81}
$$

which will be the final answer.

Solution 4:

$$
\int_{2}^{6} t^{3} \ln (5 t) d t
$$

We will use integration by parts to solve this. Let

$$
\begin{gathered}
u=\ln (5 t) \text { and } v^{\prime}(t)=t^{3} \\
\int_{2}^{6} t^{3} \ln (5 t) \mathrm{d} t=\left.\frac{t^{4}}{4} \ln (5 t)\right|_{2} ^{6}-\int_{2}^{6} \frac{t^{4}}{4} \cdot \frac{1}{t} \mathrm{~d} t \\
\Longrightarrow \frac{6^{4}}{4} \ln (5 \cdot 6)-\frac{2^{4}}{4} \ln (5 \cdot 2)-\left.\frac{t^{4}}{16}\right|_{2} ^{6} \\
\Longrightarrow \frac{6^{4}}{4} \ln (30)-\frac{2^{4}}{4} \ln (10)-\frac{6^{4}}{16}+\frac{2^{4}}{16} \\
\Longrightarrow 324 \ln (30)-80-4 \ln (10)
\end{gathered}
$$

which will be the final answer.

Solution 5:

$$
\begin{gathered}
I=\int \frac{-8}{\sqrt{x^{2}+16}} \mathrm{~d} x \\
I=-8 \int \frac{1}{\sqrt{x^{2}+16}} \mathrm{~d} x
\end{gathered}
$$

We will use trigonometric substitution to solve this problem. Let $x=4 \tan \theta . \therefore \mathrm{d} x=$ $4 \cdot \sec ^{2} \theta \mathrm{~d} \theta$.

Using this substitution, we get

$$
\begin{gathered}
I=-8 \int \frac{1}{\sqrt{16 \tan ^{2} \theta+16}} \cdot 4 \sec ^{2} \theta \mathrm{~d} \theta \\
I=\frac{-8 \cdot 4}{4} \int \frac{1}{\sqrt{\tan ^{2} \theta+1}} \cdot \sec ^{2} \theta \mathrm{~d} \theta \\
I=-8 \int \frac{1}{\sqrt{\sec ^{2} \theta}} \cdot \sec ^{2} \theta \mathrm{~d} \theta \quad \because \sec ^{2} \theta=1+\tan ^{2} \theta
\end{gathered}
$$

$$
\begin{gathered}
I=-8 \int \sec \theta \mathrm{~d} \theta \\
I=-8 \cdot \ln (|\tan \theta+\sec \theta|)+C
\end{gathered}
$$

Using the Pythagoras theorem,

$$
\begin{aligned}
& I=-8 \cdot \ln \left(\left|\frac{x}{4}+\frac{\sqrt{x^{2}+16}}{4}\right|\right)+C \\
& I=-8 \cdot \ln \left(\left|x+\sqrt{x^{2}+16}\right|\right)+C
\end{aligned}
$$

which is the final answer.

Solution 6:

The goal is to find the area in the shaded region. Assume, without loss of generality, that the bigger circle is centered at $(0,0)$. So, the smaller circle is centered at $(0, h)$, where $h=\sqrt{R^{2}-r^{2}}$. The area in the shaded region is given by

$$
\begin{equation*}
\text { Shaded area }=\int_{-r}^{r}(\text { top }- \text { bottom }) d x \tag{1}
\end{equation*}
$$

where the top is given by the equation $y_{\text {top }}=\sqrt{r^{2}-x^{2}}+h$ and the bottom is given by $y_{\text {bottom }}=\sqrt{R^{2}-x^{2}}$. So, we have

$$
\begin{aligned}
\text { Shaded area } & =\int_{-r}^{r}\left(\sqrt{r^{2}-x^{2}}+h-\sqrt{R^{2}-x^{2}}\right) d x \\
& =\int_{-r}^{r}\left(\sqrt{r^{2}-x^{2}}+\sqrt{R^{2}-r^{2}}-\sqrt{R^{2}-x^{2}}\right) d x \\
& =\underbrace{\int_{-r}^{r} \sqrt{r^{2}-x^{2}} d x}_{I}+\underbrace{\int_{-r}^{r} \sqrt{R^{2}-r^{2}} d x}_{I I}-\underbrace{\int_{-r}^{r} \sqrt{R^{2}-x^{2}} d x}_{I I I}
\end{aligned}
$$

Notice that integrals I and $I I I$ are similar. We solve I using trigonometric substitution of $x=r \sin \theta$. So, $d x=r \cos \theta d \theta$ and

$$
\begin{align*}
\int \sqrt{r^{2}-r^{2} \sin ^{2} \theta} r \cos (\theta) d \theta & =\int r^{2} \cos ^{2}(\theta) d \theta \\
& =\frac{r^{2}}{2} \int \cos (2 \theta)+1 d \theta \tag{2}\\
& =\frac{r^{2}}{2}\left(\frac{1}{2} \sin (2 \theta)+\theta\right)+c \\
& =\frac{r^{2}}{2}(\sin (\theta) \cos (\theta)+\theta)+c \tag{3}
\end{align*}
$$

where (2) holds because $\cos ^{2}(\theta)=\frac{\cos (2 \theta)+1}{2}$ and (3) holds because $\sin (2 \theta)=2 \sin (\theta) \cos (\theta)$. Now note that $\sin (\theta)=\frac{x}{r}$ and $\cos (\theta)=\frac{\sqrt{r^{2}-x^{2}}}{r}$. So, we have

$$
\begin{aligned}
I & =\left[\frac{r^{2}}{2}\left(\frac{x}{r} \frac{\sqrt{r^{2}-x^{2}}}{r}+\arcsin \left(\frac{x}{r}\right)\right)\right]_{-r}^{r} \\
& =\left[\frac{r^{2}}{2}(\arcsin (1)-\arcsin (-1))\right] \\
& =\frac{\pi r^{2}}{2}
\end{aligned}
$$

Similarly, we have

$$
\int \sqrt{R^{2}-x^{2}} d x=\frac{R^{2}}{2}\left(\frac{x}{R} \frac{\sqrt{R^{2}-x^{2}}}{R}+\arcsin \left(\frac{x}{R}\right)\right)+c
$$

and

$$
\begin{aligned}
I I I & =\left[\frac{R^{2}}{2}\left(\frac{x}{R} \frac{\sqrt{R^{2}-x^{2}}}{R}+\arcsin \left(\frac{x}{R}\right)\right)\right]_{-r}^{r} \\
& =\left[\frac{R^{2}}{2}\left(\frac{r}{R} \frac{\sqrt{R^{2}-r^{2}}}{R}+\arcsin \left(\frac{r}{R}\right)-\frac{-r}{R} \frac{\sqrt{R^{2}-r^{2}}}{R}-\arcsin \left(\frac{-r}{R}\right)\right)\right] \\
& =\frac{R^{2}}{2}\left(\frac{2 r}{R} \frac{\sqrt{R^{2}-r^{2}}}{R}+2 \arcsin \left(\frac{r}{R}\right)\right) \\
& =r \sqrt{R^{2}-r^{2}}+R^{2} \arcsin \left(\frac{r}{R}\right) .
\end{aligned}
$$

So, the shaded area is

Shaded area $=I+I I-I I I$

$$
\begin{aligned}
& =\frac{\pi r^{2}}{2}+2 r \sqrt{R^{2}-r^{2}}-r \sqrt{R^{2}-r^{2}}-R^{2} \arcsin \left(\frac{r}{R}\right) \\
& =\frac{\pi r^{2}}{2}+r \sqrt{R^{2}-r^{2}}-R^{2} \arcsin \left(\frac{r}{R}\right)
\end{aligned}
$$

