Quiz 4 solutions

Solution 2: The error in the $\mathrm{n} t h$ numerical approximation of $\int_{a}^{b} f(x) d x$ using Trapezoid, Midpoint, and Simpson's rule are

$$
\begin{aligned}
& \text { error in } n \text {th Trapezoid approximation, } E_{T}(n)=\frac{K(b-a)^{3}}{12 n^{2}}, \\
& \text { error in } n \text {th Midpoint approximation, } E_{M}(n)=\frac{K(b-a)^{3}}{24 n^{2}}, \text { and } \\
& \text { error in } n \text {th Simpson's approximation, } E_{S}(n)=\frac{L(b-a)^{5}}{180 n^{4}}
\end{aligned}
$$

respectively. Notice that the error using Midpoint rule decreases slightly faster than Trapezoid rule because of the constants $\frac{K(b-a)^{3}}{24 n^{2}}<\frac{K(b-a)^{3}}{12 n^{2}}$ for all n. The error using Simpson's rule decrease fastest because $\frac{L(b-a)^{5}}{180 n^{4}}<\frac{K(b-a)^{3}}{12 n^{2}}$ for large n. So, the correct answer is: Approximation using midpoint rule is slightly better than trapezoid rule but Simpson's rule provides the best approximation.

Solution 3:

$\underline{\text { False: }}$ Let $a_{n}=L$ and $c_{n}=\frac{1}{n}+L+1$ for all n. Consider $b_{n}=\frac{\sin (n)}{4}+L+\frac{1}{2}$. The sequence $\left\{b_{n}\right\}$ oscillates taking values between L and $L+1$ and does not converge.

Solution 4:

True: If $\left(a_{n}\right)_{n=1}^{\infty}$ is an increasing sequence, then $a_{n}<a_{n+1}$ for all $n \in \mathbb{Z}^{+}$, and so

$$
a_{1}<a_{2}<a_{3}<a_{4} \ldots a_{n}<a_{n+1}<\ldots
$$

which shows that a_{1} is a lower bound of the sequence $\left(a_{n}\right)_{n=1}^{\infty}$.

Solution 5:

a) Since the sequence $\left\{\frac{6 n}{2 n+3}\right\}$ converges to 3 and not to 0 , we can say that $\sum_{n=1}^{\infty} \frac{6 n}{2 n+3}$ diverges to ∞. Also, it can be easily verified that the ratio test turns out to be inconclusive in this case.
b) To check the convergence of the sequence $\left\{\frac{6 n}{2 n+3}\right\}$, we need to take the limit going to infinity.

$$
\therefore \lim _{n \rightarrow \infty} \frac{6 n}{2 n+3}=\lim _{n \rightarrow \infty} \frac{6}{2+3 / n}=3
$$

The limit exists and hence the sequence converges to 3 .

Solution 6:

a) The geometric series

$$
\sum_{n=0}^{\infty} \frac{(x+2)^{n}}{2^{n}}=\sum_{n=0}^{\infty}\left(\frac{x+2}{2}\right)^{n}
$$

converges for all x that satisfy $\left|\frac{x+2}{2}\right|<1$. From this inequality, we get

$$
-2<x+2<2 \Longrightarrow x \in(-4,0)
$$

for which the series converges.
b) The given series is $1+\frac{(x+2)}{2}+\frac{(x+2)^{2}}{2^{2}}+\frac{(x+2)^{3}}{2^{3}}+\ldots$.

We know that the sum of the infinite series is $\frac{a}{1-r}$ where a is the first term and r is the common ratio which is <1 i.e. the series converges.

$$
\therefore \text { Sum }=\frac{1}{1-\frac{(x+2)}{2}}=\frac{-2}{x}
$$

which is the sum of the series for those values of x.

