Quiz 5 solutions

Solution 2: The divergence test applied to the series
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tells us that further testing is needed because lim,, i =0.
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Solution 3: Suppose Y a, and > b, are series with positive terms and ) b, is known to
be divergent. If a,, > b, for all n, then by comparision test ) a, diverges.

Solution 4: Consider the series ) a,. Using ratio test,
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we cannot conclude convergence or divergence of g ay, if lim =1, and
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Solution 5: In order to determine the convergence behaviour of the series
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we can try to use ratio test. Using ratio test, we get
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So ratio test is inconclusive. So, let us use a different test. We see that the sequence {#8}
is decreasing for all n, is positive and converges to 0. So by alternating series test the
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series Y~ | “—+— converges. However, the series given by > | |*=4=—| = >_>° | —= does

not converge. To see that the series Zoo 1 5 does not converge, we use comparison test

and compare the series to the harmonic series. So, the serise Y .°-, —— is conditionally
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convergent.



Solution 6: We can use integral test to determine the values of p such that the series
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converges. Let f(z) = BZ. Then f/(z) = 277! (1 —3plnz) and f'(z) <0 for x > 1 if
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So, the sequence {;z} is decreasing for n > Ny, where Nj is sufficiently large. Also, the
sequence is positive and f(z) is continuous for positive . Thus, by integral test, the series

> :TZ converges if the improper integral [ ;Z E‘Tf dx converges. Observe that
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using integration by parts. So,
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and the improper integral I exists if 3p > 1. So, the improper integral [ ;‘; x%p dx converges
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it p € (%, o0) and so, as a result, the series ) | L% converges if p € (%, oo)



Solution 7: WeBWorK solution for the series >~ m
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Solution: First of all, the function (4—4)3 is positive and decreasing for all x > 1, because its denominator is
X +

positive and increasing for x > 1. Also, the function goes to 0 as x — oo because its denominator goes to
infinity. Therefore, the Integral Test, and its Remainder Estimate, can be applied.

For part (A), the Remainder Estimate is
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For part (B), we need to find the smallest positive integer n for which the above expression is less than 0.00002.
So we set up the relevant inequality and solve it:
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Rounding this up to the next largest integer gives n = 19.



