Quiz 5 solutions

Solution 2: The divergence test applied to the series

$$\sum_{i=1}^{\infty} \frac{5k}{(2k+7)^5}$$

tells us that **further testing is needed** because $\lim_{n\to\infty} \frac{5k}{(2k+7)^5} = 0$.

Solution 3: Suppose $\sum a_n$ and $\sum b_n$ are series with positive terms and $\sum b_n$ is known to be divergent. If $a_n > b_n$ for all n, then by comparison test $\sum a_n$ diverges.

Solution 4: Consider the series $\sum a_n$. Using ratio test,

we conclude the series converges if $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$, we cannot conclude convergence or divergence of $\sum a_n$ if $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$, and the series diverges if $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| > 1$.

Solution 5: In order to determine the convergence behaviour of the series

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n+8}$$

we can try to use ratio test. Using ratio test, we get

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{n+8}{n+9} \right| = 1.$$

So ratio test is inconclusive. So, let us use a different test. We see that the sequence $\{\frac{1}{n+8}\}$ is decreasing for all n, is positive and converges to 0. So by alternating series test, the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n+8}$ converges. However, the series given by $\sum_{n=1}^{\infty} \left|\frac{(-1)^{n-1}}{n+8}\right| = \sum_{n=1}^{\infty} \frac{1}{n+8}$ does not converge. To see that the series $\sum_{n=1}^{\infty} \frac{1}{n+8}$ does not converge, we use comparison test and compare the series to the harmonic series. So, the series $\sum_{n=1}^{\infty} \frac{1}{n+8}$ is **conditionally convergent**.

Solution 6: We can use integral test to determine the values of p such that the series

$$\sum_{n=1}^{\infty} \frac{\ln n}{n^{3p}}$$

converges. Let $f(x) = \frac{\ln x}{x^{3p}}$. Then $f'(x) = x^{-3p-1} (1 - 3p \ln x)$ and f'(x) < 0 for $x \ge 1$ if

$$(1 - 3p\ln x) \le 0$$

 $\Rightarrow x \ge \exp\left(\frac{1}{3p}\right).$

So, the sequence $\{\frac{\ln n}{n^{3p}}\}$ is decreasing for $n \ge N_0$, where N_0 is sufficiently large. Also, the sequence is positive and f(x) is continuous for positive x. Thus, by integral test, the series $\sum_{n=1}^{\infty} \frac{\ln n}{n^{3p}}$ converges if the improper integral $\int_{N_0}^{\infty} \frac{\ln x}{x^{3p}} dx$ converges. Observe that

$$\int_{N_0}^{\infty} \frac{\ln x}{x^{3p}} \, dx = \lim_{b \to \infty} \int_{N_0}^{b} \frac{\ln x}{x^{3p}} \, dx$$

and

$$\int_{N_0}^{b} \frac{\ln x}{x^{3p}} \, dx = \frac{x^{-3p+1} \ln x}{-3p+1} \bigg|_{N_0}^{b} + \frac{1}{-3p+1} \int_{N_0}^{b} \frac{1}{x^{3p}} \, dx$$

using integration by parts. So,

$$\int_{N_0}^{\infty} \frac{\ln x}{x^{3p}} dx = \lim_{b \to \infty} \frac{x^{-3p+1} \ln x}{-3p+1} \bigg|_{N_0}^{b} + \frac{1}{-3p+1} \lim_{b \to \infty} \int_{N_0}^{b} \frac{1}{x^{3p}} dx$$
$$= \frac{N_0^{-3p+1} \ln N_0}{-3p+1} + \frac{1}{-3p+1} \underbrace{\lim_{b \to \infty} \int_{N_0}^{b} \frac{1}{x^{3p}} dx}_{I}$$

and the improper integral I exists if 3p > 1. So, the improper integral $\int_{N_0}^{\infty} \frac{1}{x^{3p}} dx$ converges if $p \in (\frac{1}{3}, \infty)$ and so, as a result, the series $\sum_{n=1}^{\infty} \frac{\ln n}{n^{3p}}$ converges if $p \in (\frac{1}{3}, \infty)$.

Solution 7: WeBWorK solution for the series $\sum_{n=1}^{\infty} \frac{1}{(4n+4)^3}$

Solution: First of all, the function $\frac{1}{(4x+4)^3}$ is positive and decreasing for all $x \ge 1$, because its denominator is positive and increasing for $x \ge 1$. Also, the function goes to 0 as $x \to \infty$ because its denominator goes to infinity. Therefore, the Integral Test, and its Remainder Estimate, can be applied.

For part (A), the Remainder Estimate is

$$\begin{aligned} |s - s_n| &\leq \int_n^\infty \frac{dx}{(4x + 4)^3} \\ &= \lim_{t \to \infty} \frac{-1}{4(2)(4x + 4)^2} \bigg|_n^t \qquad = \frac{1}{4(2)(4n + 4)^2} \end{aligned}$$

For part (B), we need to find the smallest positive integer n for which the above expression is less than 0.00002. So we set up the relevant inequality and solve it:

$$\frac{1}{4(2)(4n+4)^2} < 0.00002$$

$$(4n+4)^2 > \frac{1}{4(2)0.00002}$$

$$(4n+4) > \frac{1}{\sqrt[2]{4(2)0.00002}}$$

$$n > \frac{\frac{1}{\sqrt[2]{4(2)0.00002}} - 4}{4} \approx 18.7642$$

Rounding this up to the next largest integer gives n = 19.