4. Regularized least squares

- Regularized least squares
- Tikhonov regularization

Regularized least squares

Multi-objective least-squares

Many problems need to balance competing objectives, e.g.

- make $f_{1}(x)=\|A x-b\|_{2}^{2}$ small
- make $f_{2}(x)=\|F x-g\|_{2}^{2}$ small

Can make $f_{1}(x)$ or $f_{2}(x)$ small, but not both.

Example: $\xi^{(i)}=\left(f_{1}\left(x^{(i)}\right), f_{2}\left(x^{(i)}\right)\right)$

Weighted-sum objective

- Weighted-sum objective gives a Pareto optimal solution:

$$
f_{1}(x)+\gamma f_{2}(x)=\|A x-b\|^{2}+\gamma\|F x-g\|^{2}
$$

- parameter $\gamma \geq 0$ defines relative weight between objectives
- points where $f_{1}(x)+\gamma f_{2}(x)=\alpha$ correspond to a line with slop $-\gamma$

Example: Signal denoising

- Suppose we observe noisy measurements of a signal:

$$
b=\hat{x}+w \quad \text { with } \quad \hat{x} \in \mathbf{R}^{n} \quad \text { signal, } \quad w \in \mathbf{R}^{n} \quad \text { noise }
$$

- Naive least squares fits noise perfectly

$$
\underset{x \in \mathbf{R}^{n}}{\operatorname{minimize}} \quad \frac{1}{2}\|x-b\|^{2}
$$

- Suppose we have prior information that the signal is "smooth"
- Then we might balance fit against smoothness

$$
\underset{x \in \mathbf{R}^{n}}{\operatorname{minimize}} \underbrace{\frac{1}{2}\|x-b\|^{2}}_{f_{1}(x)}+\frac{1}{2} \gamma \underbrace{\sum_{i=1}^{n-1}\left(x_{i}-x_{i+1}\right)^{2}}_{f_{2}(x)}
$$

where $f_{2}(x)$ "encourages" smoothness of the solution x

Example: Signal denoising

- Define the finite difference matrix

$$
D=\left[\begin{array}{cccccc}
1 & -1 & 0 & \cdots & 0 & 0 \\
0 & 1 & -1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & -1
\end{array}\right] \in \mathbf{R}^{n-1 \times n}
$$

so that $\sum_{i=1}^{n-1}\left(x_{i}-x_{i+1}\right)^{2}=\|D x\|^{2} \quad\|\boldsymbol{A} \boldsymbol{x}-\hat{\boldsymbol{b}}\|_{\mathbf{2}}^{\mathbf{2}}$

- Resulting least-squares objective:

$$
\|x-b\|_{2}^{2}+\gamma\|D x\|^{2}=\left\|\left[\begin{array}{c}
I \\
\sqrt{\gamma} D
\end{array}\right] x-\left[\begin{array}{l}
b \\
0
\end{array}\right]\right\|^{2}
$$

- Normal equations

$$
\begin{aligned}
& \left(I+\gamma D^{T} D\right) x=b \\
& \boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{A}^{\top} \boldsymbol{b}
\end{aligned}
$$

Example: Signal denoising

Demo

In homework, will discover a much better penalty function

Regularized least squares (aka Tikhonov)

- General form

$$
\begin{array}{cc}
\underset{x}{\operatorname{minimize}} & \frac{1}{2}\|A x-b\|^{2}+\frac{\gamma}{2}\|D x\|^{2}, \\
& \psi \geq 0 \\
& \|\boldsymbol{a}\|_{\mathbf{2}}^{\mathbf{2}}+\|\boldsymbol{b}\|_{\mathbf{2}}^{\mathbf{2}}
\end{array}
$$

- $\|D x\|_{2}^{2}$ is the regularization penalty term
- $\gamma \geq 0$ is the regularization parameter
- Equivalent expression for objective

$$
\frac{1}{2}\|A \boldsymbol{x}-b\|_{2}^{2}+\frac{\gamma}{\mathbf{\gamma}}\|D x\|^{2}=\left\|\left[\begin{array}{c}
A \\
\sqrt{\frac{\gamma}{\mathbf{2}}} D
\end{array}\right] x-\left[\begin{array}{l}
b \\
0
\end{array}\right]\right\|^{2}
$$

- Normal equations

$$
\left(A^{T} A+\frac{\gamma}{2} D^{T} D\right) x=A^{T} b
$$

Singular value decomposition.
The SVD of a matrix $A \in \mathbb{R}^{m \times n}$ is

$$
A=U \Sigma v^{\top}
$$

where $U \in \mathbb{R}^{n \times m}, V \in \mathbb{R}^{n \times n}$ are orthogonal and $\sum \in \mathbb{R}^{m \times n}$ is "diagonal". find x set. $\left(A^{\top} A x=A^{\top} b\right)$ one x has best nus
If A is a rook r matrix:
(1) u_{1}, \ldots, u_{r} is a basis for column space
(2) u_{r+1}, \ldots, u_{m} is a basis for $N\left(A^{\top}\right)$
(3) v_{1}, \ldots, v_{r} is a basis for row space $R\left(A^{\top}\right)$
(4) v_{r+1}, \ldots, v_{n} is a basis for $r(A)$.

Regularized least squares

$$
\min _{x \in \mathbb{R}^{n}}\|A x-b\|_{2}^{2}+\gamma\|x\|_{2}^{2}
$$

The normal equation: $\left(A^{\top} A+r I\right)_{x}=A^{\top} b$.

How does r affect the solution to (1)? Let x_{γ}^{*} be the minimize to (1). Express x_{γ}^{*} using b, U, V, Σ.

Rogubeized least square using sro.
The normal equation implis

$$
\begin{aligned}
& \left(A^{\top} A x+\gamma \Sigma\right)=A^{\top} b \\
\Leftrightarrow & \left(V \Sigma^{\top} u^{\top} u \Sigma V^{\top} x+\gamma V V^{\top}\right)=V \Sigma^{\top} u^{\top} b \\
\Leftrightarrow & \Sigma^{\top} \Sigma V^{\top} x+\gamma V^{\top} x=\Sigma^{\top} u^{\top} b \\
\Leftrightarrow & \Sigma^{\top} \Sigma z+\gamma z=\Sigma^{\top} u^{\top} b
\end{aligned}
$$

where $z:=V^{\top} x \in \mathbb{R}^{n}$
so, $\quad z_{i}=\left\{\begin{array}{cc}\frac{\sigma_{i} u_{i}^{\top} b}{\sigma_{i}^{2}+r}, & i=1, \ldots, r \\ 0, & i=r+1, \ldots, n\end{array}\right.$

Ryubized least square using sro.

Note that $z=V^{\top} x \Rightarrow x=V_{z}$
So, $x_{\gamma}^{*}=\sum_{i=1}^{r} \frac{\sigma_{i} u_{i}^{\top} b}{\sigma_{i}^{2}+\gamma} v_{i}$
ad $\lim _{\gamma \rightarrow 0} x_{\gamma}^{\top}=\lim _{\gamma \rightarrow 0} \sum_{i=1}^{r} \frac{\sigma_{i} u_{i}^{\top} b}{\sigma_{i}^{2}+\gamma} v_{i}$

$$
=\sum_{i=1}^{r} \frac{u_{i}^{\top} b}{\sigma_{i}} v_{i}
$$

is the minimum norm solution to the linear least square problem. $\min _{x}\left\|t_{x}-b\right\|_{2}^{2}$

