4. Regularized least squares

- Regularized least squares
- Tikhonov regularization

Regularized least squares

Multi-objective least-squares

Many problems need to balance competing objectives, e.g.

- make $f_1(x) = ||Ax b||_2^2$ small
- make $f_2(x) = ||Fx g||_2^2$ small

Can make $f_1(x)$ or $f_2(x)$ small, but not both.

Example: $\xi^{(i)} = (f_1(x^{(i)}), f_2(x^{(i)}))$

Weighted-sum objective

• Weighted-sum objective gives a Pareto optimal solution:

$$f_1(x) + \gamma f_2(x) = ||Ax - b||^2 + \gamma ||Fx - g||^2$$

- parameter $\gamma \ge 0$ defines relative weight between objectives
- points where $f_1(x) + \gamma f_2(x) = \alpha$ correspond to a line with slop $-\gamma$

Example: Signal denoising

• Suppose we observe noisy measurements of a signal:

 $b = \hat{x} + w$ with $\hat{x} \in \mathbf{R}^n$ signal, $w \in \mathbf{R}^n$ noise

• Naive least squares fits noise perfectly

$$\underset{x \in \mathbf{R}^n}{\text{minimize}} \quad \frac{1}{2} \|x - b\|^2$$

- Suppose we have prior information that the signal is "smooth"
- Then we might balance fit against smoothness

$$\underset{x \in \mathbf{R}^{n}}{\text{minimize}} \quad \underbrace{\frac{1}{2} \|x - b\|^{2}}_{f_{1}(x)} + \frac{1}{2} \gamma \underbrace{\sum_{i=1}^{n-1} (x_{i} - x_{i+1})^{2}}_{f_{2}(x)}$$

where $f_2(x)$ "encourages" smoothness of the solution x

Example: Signal denoising

• Define the finite difference matrix

$$D = \begin{bmatrix} 1 & -1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & -1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & -1 \end{bmatrix} \in \mathbf{R}^{n-1 \times n}$$

so that
$$\sum_{i=1}^{n-1} (x_i - x_{i+1})^2 = \|Dx\|^2 \qquad \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{\mathbf{X}}^2$$

• Resulting least-squares objective:

$$\|x - b\|_{2}^{2} + \gamma \|Dx\|^{2} = \left\| \begin{bmatrix} I \\ \sqrt{\gamma}D \end{bmatrix} x - \begin{bmatrix} b \\ 0 \end{bmatrix} \right\|^{2}$$

A ،

• Normal equations

$$(I + \gamma D^T D)x = b$$

$$A^T A \mathbf{x} = A^T \mathbf{b}$$

Example: Signal denoising

In homework, will discover a much better penalty function

Regularized least squares (aka Tikhonov)

• General form

•

• Normal equations

$$(A^T A + \frac{\gamma D^T D}{\mathbf{z}})x = A^T b$$

Regularized least squares. The normal equation: $(A^TA + *I)_{x} = A^Tb$

How does 8 affect the solution to 0?hel x_{g}^{*} be the minimizer to 0 Express x_{g}^{*} using b, U, V, Σ .

Rightized least squares using SVD. The normal equation implies $(A^TA_{x+} \nabla E) = A^Tb$ $\Leftrightarrow (V \overline{z} u^{T} u \overline{z} V^{T} x + s V V_{\overline{z}}) = V \overline{z}^{T} u^{T} b$ $\iff \Sigma^{T} \Sigma V^{T} + \sigma V^{T} = \Sigma^{T} U^{T} 6$ $\Leftarrow Z^T Z z + \delta z = Z^T u^T b$ where $Z = V x \in \mathbb{R}^n$ $So_{j} = \begin{cases} \frac{\sigma_{i} u_{i}^{T} b}{\sigma_{i}^{2} + \delta} \\ 0 \end{cases}$; = 1, ..., r $i = r+l_1 \cdots, n$

Righters d least squares using SVD.

Note that Z = V'z = x = Vz So, $x_{\gamma}^{*} = \sum_{i=1}^{r} \frac{\sigma_{i} u_{i}^{T} b}{\sigma_{i}^{2} + \sigma_{\gamma}} V_{i}$ and $\lim_{T \to 0} x_T^T = \lim_{T \to 0} \sum_{i=1}^{\infty} \frac{\sigma_i u_i^T b}{\sigma_i^2 t \delta} V_i$ $= \sum_{i=1}^{T} \frac{v_i^{\mathsf{T}} b}{v_i} v_i$ is the minimum norm solution to the liner least squares problem min 11Ax-b1122