
6. Unconstrained optimization

• optimality

• sufficient conditions



Optimality



Optimality

minimize
x∈S

f(x) where f : Rn → R, S ⊆ Rn

A point x∗ ∈ S is a

1. global minimizer of f if f(x∗) ≤ f(x) ∀ x ∈ S

2. global maximizer of f if f(x∗) ≥ f(x) ∀ x ∈ S

3. local minimizer of f if f(x∗) ≤ f(x) ∀ x ∈ S where ‖x− x∗‖2 ≤ ε

4. local maximizer of f if f(x∗) ≥ f(x) ∀ x ∈ S where ‖x− x∗‖2 ≤ ε

for some ε > 0.



Optimality

x∗ is a strict global min or max if for all x ∈ S, f(x∗) = f(x) ⇐⇒ x = x∗.

The maximizer of f(x) is the minimizer of −f(x). (So we can only consider
mins.)



Optimal attainment

• Optimal value may not always be attained or even exist

• If exists, optimal values are always unique even if optimal point is not



Example 1

minimize
x,y

{f(x, y) = x+ y : x2 + y2 ≤ 1}



Example 2

minimize
x,y

{
f(x, y) =

x+ y

x2 + y2 + 1
: x, y ∈ R

}

• Global maximizer (1/
√

2, 1/
√

2)

• Global minimizer (−1/
√

2,−1/
√

2)



Local optimality: 1-D

How can we tell if f(x∗) < f(x) for all x ∈ S “close to” x∗?



Local optimality: 1-D

Let’s only consider points in the interior of S (b,c,d,e)



Sufficient conditions



Local optimality: 1-D

• Assume that x is in the interior of S (ignore boundaries for now).

• Then x = x∗ is a local minimizer (c) if

f ′(x) = 0︸ ︷︷ ︸
f(x) is flat at x

and f ′′(x) > 0︸ ︷︷ ︸
f(x) is convex at x

• Similarly, x = x∗ is a local maximizer (b) if

f ′(x) = 0︸ ︷︷ ︸
f(x) is flat at x

and f ′′(x) < 0︸ ︷︷ ︸
f(x) is concave at x

• If f ′(x) = 0 and f ′′(x) = 0 (d,e), not enough information

Consider f(x) = x3 and f(x) = x4 at x = 0



Motivating proof (1-D)



Gradients

For a function f : Rn → R, the gradient of f at x is a vector in Rn

∇f(x) =



∂f(x)

∂x1

∂f(x)

∂x2
...

∂f(x)

∂xn


∈ Rn

Example:

f(x) = x21 + 8x1x2 − 2x33, ∇f(x) =

2x1 + 8x2
8x1
−6x23
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Hessian

For a differentiable function f : Rn → R, the Hessian of f at x is a symmetric
matrix in Rn×n:

∇2f(x) =



∂f2(x)
∂x1∂x1

∂f2(x)
∂x1∂x2

. . . ∂f2(x)
∂x1∂xn

∂f2(x)
∂x2∂x1

∂f2(x)
∂x2∂x2

. . . ∂f2(x)
∂x2∂xn

...
...

. . .
...

∂f2(x)
∂xn∂x1

∂f2(x)
∂xn∂x2

. . . ∂f2(x)
∂xn∂xn

 ∈ Rn×n

Example:

f(x) = x21+8x1x2−2x33, ∇f(x) =

2x1 + 8x2
8x1
−6x23

 , ∇2f(x) =

2 8 0
8 0 0
0 0 −12x3
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Directional derivatives

• For a differentiable function f : Rn → R, the directional derivative is

f ′(x; d) = lim
α→0+

f(x+ αd)− f(x)

α
= ∇f(x)T d

• A function is flat at x∗ if its directional derivative is 0 for all d ∈ Rn

∀d ∈ Rn, f ′(x; d) = 0 ⇐⇒ ∇f(x) = 0

• Such a point is also called a stationary point of f



Directional 2nd derivatives

• For a twice-differentiable function f : Rn → R, the directional second
derivative is

f ′′(x; d) = lim
α→0+

f ′(x+ αd; d)− f ′(x; d)

α
= dT∇2f(x)d

• A function is convex if for all x, y in its domain, and all 0 ≤ θ ≤ 1,

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

• If a function is convex, its directional second derivative is positive for all
d ∈ Rn

∀x ∈ domf, ∀d ∈ Rn, f ′′(x; d) ≥ 0



Sufficient conditions for optimality

minimize
x∈S

f(x), f : Rn → R

• x∗ ∈ S is a minimizer of f(x) if

∇f(x∗) = 0, zT∇2f(x∗)z > 0, ∀z ∈ Rn︸ ︷︷ ︸
positive definite

• x∗ ∈ S is a maximizer of f(x) if

∇f(x∗) = 0, zT∇2f(x∗)z < 0, ∀z ∈ Rn︸ ︷︷ ︸
negative definite

• If ∇f(x∗) = 0, ∇2f(x∗) is neither positive nor negative definite, it is
indefinite

• x∗ is a saddle point (not a minimizer or a maximizer)



Motivating proof

• If ∇f(x∗) = 0 and ∇2f(x∗) is positive definite, then for any x and
z = x− x∗:

f(x) = f(x∗) +∇f(x∗)T z︸ ︷︷ ︸
=0

+
1

2
zT∇2f(x∗)z︸ ︷︷ ︸

strictly positive

+ O(‖z‖3)︸ ︷︷ ︸
really small

> f(x∗)

when x is close enough to x∗ (local minimum)

• If ∇f(x∗) = 0 and ∇2f(x∗) is negative definite, then for any x and
z = x− x∗:

f(x) = f(x∗) +∇f(x∗)T z︸ ︷︷ ︸
=0

+
1

2
zT∇2f(x∗)z︸ ︷︷ ︸

strictly negative

+ O(‖z‖3)︸ ︷︷ ︸
really small

< f(x∗)

when x is close enough to x∗ (local maximum)



Example

minimize
x,y

f(x, y) :=
x+ y

x2 + y2 + 1

Gradient of f :

∇f(x, y) =
1

(x2 + y2 + 1)2

[
y2 − 2xy − x2 + 1
x2 − 2xy − y2 + 1

]
Where is ∇f(x, y) = 0?

(x∗, y∗) =

(
1√
2
,

1√
2

)
and (x∗, y∗) =

(
− 1√

2
,− 1√

2

)
Hessian of f at these points:

∇2f(x, y) =

[
− 1√

2
0

0 − 1√
2

]
, and ∇2f(x, y) =

[
1√
2

0

0 1√
2

]



Example

(x∗, y∗) =

(
− 1√

2
,− 1√

2

)
︸ ︷︷ ︸

minimum

and (x∗, y∗) =

(
1√
2
,

1√
2

)
︸ ︷︷ ︸

maximum

∇2f(x, y) =

[
1√
2

0

0 1√
2

]
︸ ︷︷ ︸

positive definite

and ∇2f(x, y) =

[
− 1√

2
0

0 − 1√
2

]
︸ ︷︷ ︸

negative definite



Convexity and optimality: 1-D

minimize
x∈S

f(x), f(x) is differentiable everywhere.

• Suppose for some point x∗ in the interior of S, f ′(x∗) = 0.

• Then,

• if f ′′(x∗) > 0, x∗ is a local minimum
• if f ′′(x∗) < 0, x∗ is a local maximum
• if f ′′(x∗) = 0, x∗ could be a local minimum, maximum, or saddle point.

• Example of third case:

• f(x) = x4, x∗ = 0 is a local minimum
• f(x) = −x4, x∗ = 0 is a local maximum
• f(x) = x3, x∗ = 0 is a saddle point



Convexity and optimality: 1-D

minimize
x∈S

f(x), f(x) is differentiable everywhere.

Claim: If f ′′(x) ≥ 0 for all x ∈ S, then

← We don’t need strict inequality!

f ′(x∗) = 0 ⇐⇒ x∗ is a global minimum (maybe not unique)

Proof: use mean value theorem from calculus.

• Suppose there exists some x̄ where f(x̄) < f(x∗)

• Without loss of generality, assume x̄ < x∗. (Just reverse the proof otherwise.)

• By MVT, there exists x̃ ∈ (x̄, x∗) where f ′(x̃) > 0

• By MVT, there exists x̂ ∈ (x̃, x∗) where f ′′(x̂) < 0

• Contradiction!
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