6. Unconstrained optimization

® optimality

® sufficient conditions



Optimality



Optimality

migiergize f(x) where f:R" >R, SCR"
A point 2* € S'is a
1. global minimizer of f if f(z*) < f(z) VzeS§
2. global maximizer of f if f(z*) > f(z) Vz €S
3. local minimizer of f if f(z*) < f(x) Vaz €S where ||z —2*||2 <e
4. local maximizer of f if f(z*) > f(z) Va2 €S where ||z —z*|]2 <€

for some ¢ > 0.



Optimality

*

x* is a strict global min or max if for all z € S, f(z*) = f(z) < =z =z*.

The maximizer of f(z) is the minimizer of —f(x). (So we can only consider
mins.)



Optimal attainment

® QOptimal value may not always be attained or even exist

® |f exists, optimal values are always unique even if optimal point is not



Example 1

minimize {f(z,y) =z +y: 2> +y*> <1}



Example 2

D T4y
minimize< f(z,y) = 5—5 — 7,y €R
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e Global maximizer (1/v/2,1/v/2)
® Global minimizer (—1/v/2,—1//2)



Local optimality: 1-D

How can we tell if f(z*) < f(x) for all z € S “close to" z*?

£7)

o




Local optimality: 1-D
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Let's only consider points in the interior of S (b,c,d,e)



Sufficient conditions



Local optimality: 1-D

Assume that z is in the interior of S (ignore boundaries for now).

Then z = z* is a local minimizer (c) if
f(x)=0 and f(x) >0
—— ——
f(zx) is flat at = f(x) is convex at
Similarly, z = z* is a local maximizer (b) if
f(x)=0 and ' (x) <0
—— ——
f(x) is flat at x f(zx) is concave at x

If /() =0 and f”’(x) =0 (d,e), not enough information

Consider f(z) = 2% and f(z) =z at 2 =0



Motivating proof (1-D)



Gradients

For a function f : R™ — R, the gradient of f at x is a vector in R"
[0f ()]
&vl
of(x)

Example:

f(z) =22 + 8xy29 — 2x§, Vf(x) =



Gradients

For a function f : R™ — R, the gradient of f at x is a vector in R"

[0f(2)]
&vl
of(z)
Vf(x)=| 0zo | €R"

Example:

2x1 + 8o
f(z) = 23 + 8xy29 — 223, Vix)= 811



Hessian

For a differentiable function f : R™ — R, the Hessian of f at x is a symmetric
matrix in R™*™:

of*(x)  8f*(x) af*(x)
Ox,0x, Ox10x4 te Ox,10x,
of*(x)  8f*(x) af*(z)
V2f(z) = | 90202, 020w, - Das0m, | € RV
of*(x)  9f*(x) af*(x)
oz, 0z, 0x, 0T e 0x,0x,
Example:
2x1 + 8o
fla) = x%+8:1719:272$§, Vi(x) = 81 , sz(x) =

2
—6x3



Hessian

For a differentiable function f : R™ — R, the Hessian of f at x is a symmetric
matrix in R™*™:

of*(x)  8f*(x) af*(x)
Ox,0x, Ox10x4 te Ox,10x,
of*(x)  8f*(x) af*(z)
V2f(z) = | 90202, 020w, - Das0m, | € RV
o @) A () 0% (x)
oz, 0z, 0x, 0T e 0x,0x,
Example:
21’1 + 8!.52 2 8 0
fla) = x%+8:1719:272$§, Vi(x) = 811 , sz(a:) = (8 0 0
—623 0 0 —12z3



Directional derivatives

® For a differentiable function f : R™ — R, the directional derivative is

a—0*t (0%

= Vf(x)"d

® A function is flat at 2* if its directional derivative is O for all d € R"

Vd e R", f'(z;d) =0 < Vf(z)=0

® Such a point is also called a stationary point of f



Directional 2nd derivatives

® For a twice-differentiable function f : R™ — R, the directional second
derivative is

=d"V%f(z)d

f”(m'd) — lim f/(x+ad; d) _f/(l‘;d)

a—0t «
® A function is convex if for all x,y in its domain, and all 0 < 6 < 1,

[0z + (1 —0)y) <0f(x)+(1—-0)f(y)

® |f a function is convex, its directional second derivative is positive for all

deR"
Vo € domf, Vd € R", f"(x;d) >0



Sufficient conditions for optimality

minimize f(z), f:R"—=R

® z* ¢ S is a minimizer of f(z) if

Vfi(x*)=0, V2 f(x*)2 >0, VzeR"

positive definite

® 1* € S is a maximizer of f(x) if

Vf(z*)=0, IV f(x*)2 <0, VzeR"

negative definite

o If Vf(x*) =0, V2f(z*) is neither positive nor negative definite, it is
indefinite

® 1* is a saddle point (not a minimizer or a maximizer)



Motivating proof

o If Vf(x*) =0 and V2f(2*) is positive definite, then for any x and
z=x—z":

fl@) = f(a") + Vf(a") 2+ %ZTVW(IE*)Z + 0 0(z®) > f(a¥)
-0 —_—

—
strictly positive really small

when z is close enough to z* (local minimum)

o If Vf(x*) =0 and V2f(x*) is negative definite, then for any = and
z=x—x*:

f@)= fE) 4 VIE) 4 S TVE: o Oel) < )
-0 —_—

N——
strictly negative really small

when z is close enough to z* (local maximum)



Example

minimize  f(x,y) := _rry
T,y Y Tt +yP+1
Gradient of f:
1 y? — 2oy —x% +1
VI = e [m2—2xy—y2+1

Where is V f(z,y) = 0?7

(ly)=<\2\}§) and (x*7y*):<_

Hessian of f at these points:

-3

_ 1 1
V2f(z,y) = [ dﬁ ], and  V?f(z,y) = l%ﬁ (1)]
V2

0
1
V2



Example

(-r*,y*)=<—\}§,—¢1§> and (x*,y*):(\}i’\}i>

minimum maximum
1 0 1 0
VQf(ma?/) = [{f 1] and V2f(aj,y) = [ (\)/§ e
V2 VG

positive definite negative definite



Convexity and optimality: 1-D

miniergize f(z), f(z) is differentiable everywhere.
x

® Suppose for some point z* in the interior of S, f'(z*) = 0.
® Then,

o if f/(z*) >0, " is a local minimum
o if f/(2*) <0, 2" is a local maximum
® if f’(z*) =0, * could be a local minimum, maximum, or saddle point.

® Example of third case:

® f(z) ==z* z* =0is a local minimum

® f(z)=—x* x* =0is a local maximum
*f

—x
(z) = 23, * = 0 is a saddle point



Convexity and optimality: 1-D

minirgize f(x), f(z) is differentiable everywhere.
rE

Claim: If f”(z) > 0 for all z € S, then

f(z*) =0 <= z* s a global minimum (maybe not unique)



Convexity and optimality: 1-D

miniergize f(x), f(z) is differentiable everywhere.

Claim: If f”(z) > 0 for all z € S, then + We don't need strict inequality!

f(z*) =0 <= z* s a global minimum (maybe not unique)



Convexity and optimality: 1-D

minirgize f(x), f(z) is differentiable everywhere.

re

Claim: If f”(z) > 0 for all z € S, then + We don't need strict inequality!
f(z*) =0 <= z* s a global minimum (maybe not unique)

Proof: use mean value theorem from calculus.

® Suppose there exists some T where f(Z) < f(z*)

Without loss of generality, assume Z < z*. (Just reverse the proof otherwise.)

By MVT, there exists & € (Z,2*) where f'(Z) > 0
By MVT, there exists & € (&, z*) where f”(%) <0

Contradiction!
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