6. Unconstrained optimization

- optimality
- sufficient conditions

Optimality

Optimality

$$
\underset{x \in \mathcal{S}}{\operatorname{minimize}} \quad f(x) \quad \text { where } \quad f: \mathbf{R}^{n} \rightarrow \mathbf{R}, \mathcal{S} \subseteq \mathbf{R}^{n}
$$

A point $x^{*} \in \mathcal{S}$ is a

1. global minimizer of f if $f\left(x^{*}\right) \leq f(x) \quad \forall x \in \mathcal{S}$
2. global maximizer of f if $f\left(x^{*}\right) \geq f(x) \quad \forall x \in \mathcal{S}$
3. local minimizer of f if $f\left(x^{*}\right) \leq f(x) \quad \forall x \in \mathcal{S}$ where $\left\|x-x^{*}\right\|_{2} \leq \epsilon$ 4. local maximizer of f if $f\left(x^{*}\right) \geq f(x) \quad \forall x \in \mathcal{S}$ where $\left\|x-x^{*}\right\|_{2} \leq \epsilon$ for some $\epsilon>0$.

Optimality

x^{*} is a strict global min or max if for all $x \in \mathcal{S}, f\left(x^{*}\right)=f(x) \Longleftrightarrow x=x^{*}$.

The maximizer of $f(x)$ is the minimizer of $-f(x)$. (So we can only consider mins.)

Optimal attainment

- Optimal value may not always be attained or even exist
- If exists, optimal values are always unique even if optimal point is not

Example 1

$$
\underset{x, y}{\operatorname{minimize}}\left\{f(x, y)=x+y: x^{2}+y^{2} \leq 1\right\}
$$

Example 2

$$
\underset{x, y}{\operatorname{minimize}}\left\{f(x, y)=\frac{x+y}{x^{2}+y^{2}+1}: x, y \in \mathbf{R}\right\}
$$

- Global maximizer $(1 / \sqrt{2}, 1 / \sqrt{2})$
- Global minimizer $(-1 / \sqrt{2},-1 / \sqrt{2})$

Local optimality: 1-D

How can we tell if $f\left(x^{*}\right)<f(x)$ for all $x \in \mathcal{S}$ "close to" x^{*} ?

Local optimality: 1-D

Let's only consider points in the interior of \mathcal{S} (b,c,d,e)

Sufficient conditions

Local optimality: 1-D

- Assume that x is in the interior of \mathcal{S} (ignore boundaries for now).
- Then $x=x^{*}$ is a local minimizer (c) if

- Similarly, $x=x^{*}$ is a local maximizer (b) if

$$
\underbrace{f^{\prime}(x)=0}_{f(x) \text { is flat at } x}
$$

$f(x)$ is concave at x

- If $f^{\prime}(x)=0$ and $f^{\prime \prime}(x)=0$ (d,e), not enough information

Consider $f(x)=x^{3}$ and $f(x)=x^{4}$ at $x=0$

Motivating proof (1-D)

Gradients

For a function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$, the gradient of f at x is a vector in \mathbf{R}^{n}

$$
\nabla f(x)=\left[\begin{array}{c}
\frac{\partial f(x)}{\partial x_{1}} \\
\frac{\partial f(x)}{\partial x_{2}} \\
\vdots \\
\frac{\partial f(x)}{\partial x_{n}}
\end{array}\right] \in \mathbf{R}^{n}
$$

Example:

$$
f(x)=x_{1}^{2}+8 x_{1} x_{2}-2 x_{3}^{3}, \quad \nabla f(x)=
$$

Gradients

For a function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$, the gradient of f at x is a vector in \mathbf{R}^{n}

$$
\nabla f(x)=\left[\begin{array}{c}
\frac{\partial f(x)}{\partial x_{1}} \\
\frac{\partial f(x)}{\partial x_{2}} \\
\vdots \\
\frac{\partial f(x)}{\partial x_{n}}
\end{array}\right] \in \mathbf{R}^{n}
$$

Example:

$$
f(x)=x_{1}^{2}+8 x_{1} x_{2}-2 x_{3}^{3}, \quad \nabla f(x)=\left[\begin{array}{c}
2 x_{1}+8 x_{2} \\
8 x_{1} \\
-6 x_{3}^{2}
\end{array}\right]
$$

Hessian

For a differentiable function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$, the Hessian of f at x is a symmetric matrix in $\mathbf{R}^{n \times n}$:

$$
\nabla^{2} f(x)=\left[\begin{array}{cccc}
\frac{\partial f^{2}(x)}{\partial x_{1} \partial x_{1}} & \frac{\partial f^{2}(x)}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial f^{2}(x)}{\partial x_{1} \partial x_{n}} \\
\frac{\partial f^{2}(x)}{\partial x_{2} \partial x_{1}} & \frac{\partial f^{2}(x)}{\partial x_{2} \partial x_{2}} & \cdots & \frac{\partial f^{2}(x)}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f^{2}(x)}{\partial x_{n} \partial x_{1}} & \frac{\partial f^{2}(x)}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial f^{2}(x)}{\partial x_{n} \partial x_{n}}
\end{array}\right] \in \mathbf{R}^{n \times n}
$$

Example:
$f(x)=x_{1}^{2}+8 x_{1} x_{2}-2 x_{3}^{3}, \quad \nabla f(x)=\left[\begin{array}{c}2 x_{1}+8 x_{2} \\ 8 x_{1} \\ -6 x_{3}^{2}\end{array}\right], \quad \nabla^{2} f(x)=$

Hessian

For a differentiable function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$, the Hessian of f at x is a symmetric matrix in $\mathbf{R}^{n \times n}$:

$$
\nabla^{2} f(x)=\left[\begin{array}{cccc}
\frac{\partial f^{2}(x)}{\partial x_{1} \partial x_{1}} & \frac{\partial f^{2}(x)}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial f^{2}(x)}{\partial x_{1} \partial x_{n}} \\
\frac{\partial f^{2}(x)}{\partial x_{2} \partial x_{1}} & \frac{\partial f^{2}(x)}{\partial x_{2} \partial x_{2}} & \cdots & \frac{\partial f^{2}(x)}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f^{2}(x)}{\partial x_{n} \partial x_{1}} & \frac{\partial f^{2}(x)}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial f^{2}(x)}{\partial x_{n} \partial x_{n}}
\end{array}\right] \in \mathbf{R}^{n \times n}
$$

Example:
$f(x)=x_{1}^{2}+8 x_{1} x_{2}-2 x_{3}^{3}, \quad \nabla f(x)=\left[\begin{array}{c}2 x_{1}+8 x_{2} \\ 8 x_{1} \\ -6 x_{3}^{2}\end{array}\right], \quad \nabla^{2} f(x)=\left[\begin{array}{ccc}2 & 8 & 0 \\ 8 & 0 & 0 \\ 0 & 0 & -12 x_{3}\end{array}\right]$

Directional derivatives

- For a differentiable function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$, the directional derivative is

$$
f^{\prime}(x ; d)=\lim _{\alpha \rightarrow 0^{+}} \frac{f(x+\alpha d)-f(x)}{\alpha}=\nabla f(x)^{T} d
$$

- A function is flat at x^{*} if its directional derivative is 0 for all $d \in \mathbf{R}^{n}$

$$
\forall d \in \mathbf{R}^{n}, f^{\prime}(x ; d)=0 \Longleftrightarrow \nabla f(x)=0
$$

- Such a point is also called a stationary point of f

Directional 2nd derivatives

- For a twice-differentiable function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$, the directional second derivative is

$$
f^{\prime \prime}(x ; d)=\lim _{\alpha \rightarrow 0^{+}} \frac{f^{\prime}(x+\alpha d ; d)-f^{\prime}(x ; d)}{\alpha}=d^{T} \nabla^{2} f(x) d
$$

- A function is convex if for all x, y in its domain, and all $0 \leq \theta \leq 1$,

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

- If a function is convex, its directional second derivative is positive for all $d \in \mathbf{R}^{n}$

$$
\forall x \in \operatorname{dom} f, \forall d \in \mathbf{R}^{n}, \quad f^{\prime \prime}(x ; d) \geq 0
$$

Sufficient conditions for optimality

$$
\underset{x \in \mathcal{S}}{\operatorname{minimize}} \quad f(x), \quad f: \mathbf{R}^{n} \rightarrow \mathbf{R}
$$

- $x^{*} \in \mathcal{S}$ is a minimizer of $f(x)$ if

$$
\nabla f\left(x^{*}\right)=0, \quad \underbrace{z^{T} \nabla^{2} f\left(x^{*}\right) z>0, \quad \forall z \in \mathbf{R}^{n}}_{\text {positive definite }}
$$

- $x^{*} \in \mathcal{S}$ is a maximizer of $f(x)$ if

$$
\nabla f\left(x^{*}\right)=0, \quad \underbrace{z^{T} \nabla^{2} f\left(x^{*}\right) z<0, \quad \forall z \in \mathbf{R}^{n}}_{\text {negative definite }}
$$

- If $\nabla f\left(x^{*}\right)=0, \nabla^{2} f\left(x^{*}\right)$ is neither positive nor negative definite, it is indefinite
- x^{*} is a saddle point (not a minimizer or a maximizer)

Motivating proof

- If $\nabla f\left(x^{*}\right)=0$ and $\nabla^{2} f\left(x^{*}\right)$ is positive definite, then for any x and $z=x-x^{*}$:

$$
f(x)=f\left(x^{*}\right)+\underbrace{\nabla f\left(x^{*}\right)^{T} z}_{=0}+\underbrace{\frac{1}{2} z^{T} \nabla^{2} f\left(x^{*}\right) z}_{\text {strictly positive }}+\underbrace{O\left(\|z\|^{3}\right)}_{\text {really small }}>f\left(x^{*}\right)
$$

when x is close enough to x^{*} (local minimum)

- If $\nabla f\left(x^{*}\right)=0$ and $\nabla^{2} f\left(x^{*}\right)$ is negative definite, then for any x and $z=x-x^{*}$:

$$
f(x)=f\left(x^{*}\right)+\underbrace{\nabla f\left(x^{*}\right)^{T} z}_{=0}+\underbrace{\frac{1}{2} z^{T} \nabla^{2} f\left(x^{*}\right) z}_{\text {strictly negative }}+\underbrace{O\left(\|z\|^{3}\right)}_{\text {really small }}<f\left(x^{*}\right)
$$

when x is close enough to x^{*} (local maximum)

Example

$$
\underset{x, y}{\operatorname{minimize}} \quad f(x, y):=\frac{x+y}{x^{2}+y^{2}+1}
$$

Gradient of f :

$$
\nabla f(x, y)=\frac{1}{\left(x^{2}+y^{2}+1\right)^{2}}\left[\begin{array}{l}
y^{2}-2 x y-x^{2}+1 \\
x^{2}-2 x y-y^{2}+1
\end{array}\right]
$$

Where is $\nabla f(x, y)=0$?

$$
\left(x^{*}, y^{*}\right)=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \quad \text { and } \quad\left(x^{*}, y^{*}\right)=\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)
$$

Hessian of f at these points:

$$
\nabla^{2} f(x, y)=\left[\begin{array}{cc}
-\frac{1}{\sqrt{2}} & 0 \\
0 & -\frac{1}{\sqrt{2}}
\end{array}\right], \quad \text { and } \quad \nabla^{2} f(x, y)=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & 0 \\
0 & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

Example

$\underbrace{\left(x^{*}, y^{*}\right)=\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)}_{\text {minimum }}$ and $\underbrace{\left(x^{*}, y^{*}\right)=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)}_{\text {maximum }}$
$\underbrace{\nabla^{2} f(x, y)=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & 0 \\ 0 & \frac{1}{\sqrt{2}}\end{array}\right]}_{\text {positive definite }}$

$$
\underbrace{\nabla^{2} f(x, y)=\left[\begin{array}{cc}
-\frac{1}{\sqrt{2}} & 0 \\
0 & -\frac{1}{\sqrt{2}}
\end{array}\right]}_{\text {negative definite }}
$$

Convexity and optimality: 1-D

$\underset{x \in \mathcal{S}}{\operatorname{minimize}} \quad f(x), \quad f(x)$ is differentiable everywhere.

- Suppose for some point x^{*} in the interior of $\mathcal{S}, f^{\prime}\left(x^{*}\right)=0$.
- Then,
- if $f^{\prime \prime}\left(x^{*}\right)>0, x^{*}$ is a local minimum
- if $f^{\prime \prime}\left(x^{*}\right)<0, x^{*}$ is a local maximum
- if $f^{\prime \prime}\left(x^{*}\right)=0, x^{*}$ could be a local minimum, maximum, or saddle point.
- Example of third case:
- $f(x)=x^{4}, x^{*}=0$ is a local minimum
- $f(x)=-x^{4}, x^{*}=0$ is a local maximum
- $f(x)=x^{3}, x^{*}=0$ is a saddle point

Convexity and optimality: 1-D

$$
\underset{x \in \mathcal{S}}{\operatorname{minimize}} \quad f(x), \quad f(x) \quad \text { is differentiable everywhere. }
$$

Claim: If $f^{\prime \prime}(x) \geq 0$ for all $x \in \mathcal{S}$, then

$$
f^{\prime}\left(x^{*}\right)=0 \Longleftrightarrow x^{*} \quad \text { is a global minimum (maybe not unique) }
$$

Convexity and optimality: 1-D

$\underset{x \in \mathcal{S}}{\operatorname{minimize}} \quad f(x), \quad f(x)$ is differentiable everywhere. $x \in \mathcal{S}$
Claim: If $f^{\prime \prime}(x) \geq 0$ for all $x \in \mathcal{S}$, then \leftarrow We don't need strict inequality!

$$
f^{\prime}\left(x^{*}\right)=0 \Longleftrightarrow x^{*} \quad \text { is a global minimum (maybe not unique) }
$$

Convexity and optimality: 1-D

$$
\underset{x \in \mathcal{S}}{\operatorname{minimize}} \quad f(x), \quad f(x) \text { is differentiable everywhere. }
$$

Claim: If $f^{\prime \prime}(x) \geq 0$ for all $x \in \mathcal{S}$, then \leftarrow We don't need strict inequality!

$$
f^{\prime}\left(x^{*}\right)=0 \Longleftrightarrow x^{*} \quad \text { is a global minimum (maybe not unique) }
$$

Proof: use mean value theorem from calculus.

- Suppose there exists some \bar{x} where $f(\bar{x})<f\left(x^{*}\right)$
- Without loss of generality, assume $\bar{x}<x^{*}$. (Just reverse the proof otherwise.)
- By MVT, there exists $\tilde{x} \in\left(\bar{x}, x^{*}\right)$ where $f^{\prime}(\tilde{x})>0$
- By MVT, there exists $\hat{x} \in\left(\tilde{x}, x^{*}\right)$ where $f^{\prime \prime}(\hat{x})<0$
- Contradiction!

