6. Unconstrained optimization

- optimality
- sufficient conditions

Optimality

Optimality

 $\label{eq:generalized} \begin{array}{ll} \underset{x\in\mathcal{S}}{\text{minimize}} & f(x) & \text{where} & f:\mathbf{R}^n\to\mathbf{R},\ \mathcal{S}\subseteq\mathbf{R}^n\\ \text{A point }x^*\in\mathcal{S} \text{ is a} \end{array}$

- 1. global minimizer of f if $f(x^*) \leq f(x) \quad \forall x \in S$
- 2. global maximizer of f if $f(x^*) \ge f(x) \quad \forall \ x \in S$
- 3. local minimizer of f if $f(x^*) \le f(x) \quad \forall x \in S$ where $||x x^*||_2 \le \epsilon$
- 4. local maximizer of f if $f(x^*) \ge f(x) \quad \forall x \in S$ where $||x x^*||_2 \le \epsilon$ for some $\epsilon > 0$.

Optimality

 x^* is a strict global min or max if for all $x \in S$, $f(x^*) = f(x) \iff x = x^*$.

The maximizer of f(x) is the minimizer of -f(x). (So we can only consider mins.)

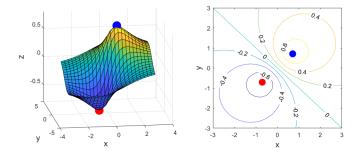
Optimal attainment

• Optimal value may not always be attained or even exist

• If exists, optimal values are always unique even if optimal point is not

$$\min_{x,y} \{ f(x,y) = x + y : x^2 + y^2 \le 1 \}$$

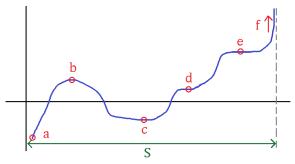
$$\underset{x,y}{\text{minimize}} \left\{ f(x,y) = \frac{x+y}{x^2+y^2+1} : x,y \in \mathbf{R} \right\}$$



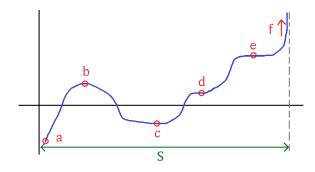
- Global maximizer $(1/\sqrt{2}, 1/\sqrt{2})$
- Global minimizer $(-1/\sqrt{2},-1/\sqrt{2})$

Local optimality: 1-D

How can we tell if $f(x^*) < f(x)$ for all $x \in \mathcal{S}$ "close to" $x^*?$



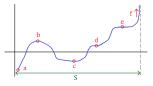
Local optimality: 1-D



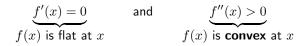
Let's only consider points in the interior of \mathcal{S} (b,c,d,e)

Sufficient conditions

Local optimality: 1-D



- Assume that x is in the interior of S (ignore boundaries for now).
- Then $x = x^*$ is a **local minimizer** (c) if



• Similarly, $x = x^*$ is a local maximizer (b) if

$$\underbrace{f'(x) = 0}{f(x) \text{ is flat at } x} \quad \text{and} \quad \underbrace{f''(x) < 0}{f(x) \text{ is concave at } x}$$

If f'(x) = 0 and f''(x) = 0 (d,e), not enough information
 Consider f(x) = x³ and f(x) = x⁴ at x = 0

Motivating proof (1-D)

Gradients

For a function $f: \mathbf{R}^n \to \mathbf{R}$, the **gradient** of f at x is a vector in \mathbf{R}^n

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{bmatrix} \in \mathbf{R}^n$$

$$f(x) = x_1^2 + 8x_1x_2 - 2x_3^3, \qquad \nabla f(x) =$$

Gradients

For a function $f: \mathbf{R}^n \to \mathbf{R}$, the **gradient** of f at x is a vector in \mathbf{R}^n

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{bmatrix} \in \mathbf{R}^n$$

$$f(x) = x_1^2 + 8x_1x_2 - 2x_3^3, \qquad \nabla f(x) = \begin{bmatrix} 2x_1 + 8x_2 \\ 8x_1 \\ -6x_3^2 \end{bmatrix}$$

Hessian

For a differentiable function $f : \mathbf{R}^n \to \mathbf{R}$, the **Hessian** of f at x is a symmetric matrix in $\mathbf{R}^{n \times n}$:

$$\nabla^2 f(x) = \begin{bmatrix} \frac{\partial f^2(x)}{\partial x_1 \partial x_1} & \frac{\partial f^2(x)}{\partial x_1 \partial x_2} & \cdots & \frac{\partial f^2(x)}{\partial x_1 \partial x_n} \\ \frac{\partial f^2(x)}{\partial x_2 \partial x_1} & \frac{\partial f^2(x)}{\partial x_2 \partial x_2} & \cdots & \frac{\partial f^2(x)}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f^2(x)}{\partial x_n \partial x_1} & \frac{\partial f^2(x)}{\partial x_n \partial x_2} & \cdots & \frac{\partial f^2(x)}{\partial x_n \partial x_n} \end{bmatrix} \in \mathbf{R}^{n \times n}$$

$$f(x) = x_1^2 + 8x_1x_2 - 2x_3^3, \quad \nabla f(x) = \begin{bmatrix} 2x_1 + 8x_2 \\ 8x_1 \\ -6x_3^2 \end{bmatrix}, \quad \nabla^2 f(x) =$$

Hessian

For a differentiable function $f : \mathbf{R}^n \to \mathbf{R}$, the **Hessian** of f at x is a symmetric matrix in $\mathbf{R}^{n \times n}$:

$$\nabla^2 f(x) = \begin{bmatrix} \frac{\partial f^2(x)}{\partial x_1 \partial x_1} & \frac{\partial f^2(x)}{\partial x_1 \partial x_2} & \cdots & \frac{\partial f^2(x)}{\partial x_1 \partial x_n} \\ \frac{\partial f^2(x)}{\partial x_2 \partial x_1} & \frac{\partial f^2(x)}{\partial x_2 \partial x_2} & \cdots & \frac{\partial f^2(x)}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f^2(x)}{\partial x_n \partial x_1} & \frac{\partial f^2(x)}{\partial x_n \partial x_2} & \cdots & \frac{\partial f^2(x)}{\partial x_n \partial x_n} \end{bmatrix} \in \mathbf{R}^{n \times n}$$

$$f(x) = x_1^2 + 8x_1x_2 - 2x_3^3, \quad \nabla f(x) = \begin{bmatrix} 2x_1 + 8x_2 \\ 8x_1 \\ -6x_3^2 \end{bmatrix}, \quad \nabla^2 f(x) = \begin{bmatrix} 2 & 8 & 0 \\ 8 & 0 & 0 \\ 0 & 0 & -12x_3 \end{bmatrix}$$

Directional derivatives

• For a differentiable function $f: \mathbf{R}^n \to \mathbf{R}$, the **directional derivative** is

$$f'(x;d) = \lim_{\alpha \to 0^+} \frac{f(x+\alpha d) - f(x)}{\alpha} = \nabla f(x)^T d$$

• A function is **flat** at x^* if its directional derivative is 0 for all $d \in \mathbf{R}^n$

$$\forall d \in \mathbf{R}^n, \ f'(x;d) = 0 \iff \nabla f(x) = 0$$

• Such a point is also called a **stationary point** of f

Directional 2nd derivatives

For a twice-differentiable function f : Rⁿ → R, the directional second derivative is

$$f''(x;d) = \lim_{\alpha \to 0^+} \frac{f'(x + \alpha d; d) - f'(x;d)}{\alpha} = d^T \nabla^2 f(x) d$$

• A function is **convex** if for all x, y in its domain, and all $0 \le \theta \le 1$,

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

• If a function is convex, its directional second derivative is positive for all $d \in \mathbf{R}^n$

$$\forall x \in \mathsf{dom} f, \ \forall d \in \mathbf{R}^n, \quad f''(x; d) \ge 0$$

Sufficient conditions for optimality

$$\underset{x \in \mathcal{S}}{\text{minimize}} \quad f(x), \qquad f: \mathbf{R}^n \to \mathbf{R}$$

• $x^* \in \mathcal{S}$ is a **minimizer** of f(x) if

$$\nabla f(x^*) = 0, \qquad \underbrace{z^T \nabla^2 f(x^*) z > 0, \quad \forall z \in \mathbf{R}^n}_{\text{positive definite}}$$

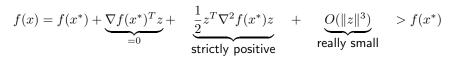
• $x^* \in S$ is a maximizer of f(x) if $\nabla f(x^*) = 0, \qquad z^T \nabla^2 f(x^*) z < 0, \quad \forall z \in \mathbf{R}^n$

$$f = 0,$$
 $z \lor f(x)z < 0, \forall z \in \mathbf{R}^*$
negative definite

- If $\nabla f(x^*) = 0$, $\nabla^2 f(x^*)$ is neither positive nor negative definite, it is indefinite
 - x^* is a saddle point (not a minimizer or a maximizer)

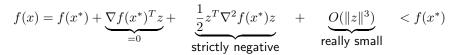
Motivating proof

• If $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive definite, then for any x and $z = x - x^*$:



when x is close enough to x^* (local minimum)

• If $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is negative definite, then for any x and $z = x - x^*$:



when x is close enough to x^* (local maximum)

Example

minimize
$$f(x,y) := \frac{x+y}{x^2+y^2+1}$$

Gradient of f:

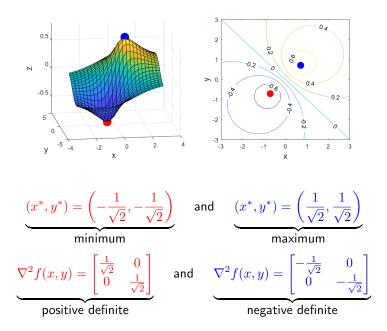
$$\nabla f(x,y) = \frac{1}{(x^2 + y^2 + 1)^2} \begin{bmatrix} y^2 - 2xy - x^2 + 1\\ x^2 - 2xy - y^2 + 1 \end{bmatrix}$$

Where is $\nabla f(x,y) = 0$?

$$(x^*,y^*)=\left(rac{1}{\sqrt{2}},rac{1}{\sqrt{2}}
ight) \quad ext{and} \quad (x^*,y^*)=\left(-rac{1}{\sqrt{2}},-rac{1}{\sqrt{2}}
ight)$$

Hessian of f at these points:

$$\nabla^2 f(x,y) = \begin{bmatrix} -\frac{1}{\sqrt{2}} & 0\\ 0 & -\frac{1}{\sqrt{2}} \end{bmatrix}, \quad \text{and} \quad \nabla^2 f(x,y) = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0\\ 0 & \frac{1}{\sqrt{2}} \end{bmatrix}$$



 $\underset{x \in \mathcal{S}}{\text{minimize}} \quad f(x), \qquad f(x) \quad \text{is differentiable everywhere.}$

- Suppose for some point x^* in the interior of S, $f'(x^*) = 0$.
- Then,
 - if $f''(x^*) > 0$, x^* is a local minimum
 - if $f''(x^*) < 0$, x^* is a local maximum
 - if $f''(x^*) = 0$, x^* could be a local minimum, maximum, or saddle point.
- Example of third case:
 - $f(x) = x^4$, $x^* = 0$ is a local minimum
 - $f(x) = -x^4$, $x^* = 0$ is a local maximum
 - $f(x) = x^3$, $x^* = 0$ is a saddle point

 $\label{eq:generalized} \begin{array}{ll} \underset{x\in\mathcal{S}}{\text{minimize}} & f(x), & f(x) \mbox{ is differentiable everywhere.} \\ \\ \text{Claim: If } f''(x) \geq 0 \mbox{ for all } x\in\mathcal{S}, \mbox{ then} \end{array}$

 $f'(x^*) = 0 \iff x^*$ is a global minimum (maybe not unique)

 $\label{eq:constraint} \begin{array}{ll} \underset{x \in \mathcal{S}}{\text{minimize}} & f(x), & f(x) & \text{is differentiable everywhere.} \\ \\ \text{Claim: If } f''(x) \geq 0 \text{ for all } x \in \mathcal{S} \text{, then } & \leftarrow \text{We don't need strict inequality!} \end{array}$

 $f'(x^*) = 0 \iff x^*$ is a global minimum (maybe not unique)

 $\begin{array}{ll} \underset{x \in \mathcal{S}}{\text{minimize}} & f(x), & f(x) & \text{is differentiable everywhere.} \\ \\ \text{Claim: If } f''(x) \geq 0 & \text{for all } x \in \mathcal{S}, \text{ then } \leftarrow \text{We don't need strict inequality!} \end{array}$

 $f'(x^*) = 0 \iff x^*$ is a global minimum (maybe not unique)

Proof: use mean value theorem from calculus.

- Suppose there exists some \bar{x} where $f(\bar{x}) < f(x^*)$
- Without loss of generality, assume $\bar{x} < x^*$. (Just reverse the proof otherwise.)
- By MVT, there exists $\tilde{x} \in (\bar{x},x^*)$ where $f'(\tilde{x}) > 0$
- By MVT, there exists $\hat{x} \in (\tilde{x}, x^*)$ where $f^{\prime\prime}(\hat{x}) < 0$
- Contradiction!