- sufficient conditions
- quadratic functions
- positive definite and positive semidefinite matrices
- eigenvalues and eigenvectors
- sufficient conditions for quadratic functions

Example

$$
\operatorname{minimize}_{x, y \in \mathbf{R}} \quad f(x, y):=\frac{x+y}{x^{2}+y^{2}+1}
$$

How many saddles point does $f(x)$ have?
A. 0
B. 1
C. 2

Example

$$
\underset{x, y}{\operatorname{minimize}} \quad f(x, y):=\frac{x+y}{x^{2}+y^{2}+1}
$$

Gradient of f :

$$
\nabla f(x, y)=\frac{1}{\left(x^{2}+y^{2}+1\right)^{2}}\left[\begin{array}{l}
y^{2}-2 x y-x^{2}+1 \\
x^{2}-2 x y-y^{2}+1
\end{array}\right]
$$

Where is $\nabla f(x, y)=0$?

$$
\left(x^{*}, y^{*}\right)=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \quad \text { and } \quad\left(x^{*}, y^{*}\right)=\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)
$$

Hessian of f at these points:

$$
\nabla^{2} f(x, y)=\left[\begin{array}{cc}
-\frac{1}{\sqrt{2}} & 0 \\
0 & -\frac{1}{\sqrt{2}}
\end{array}\right], \quad \text { and } \quad \nabla^{2} f(x, y)=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & 0 \\
0 & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

Example

$\underbrace{\left(x^{*}, y^{*}\right)=\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)}_{\text {minimum }}$ and $\underbrace{\left(x^{*}, y^{*}\right)=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)}_{\text {maximum }}$
$\underbrace{\nabla^{2} f(x, y)=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & 0 \\ 0 & \frac{1}{\sqrt{2}}\end{array}\right]}_{\text {positive definite }}$

$$
\underbrace{\nabla^{2} f(x, y)=\left[\begin{array}{cc}
-\frac{1}{\sqrt{2}} & 0 \\
0 & -\frac{1}{\sqrt{2}}
\end{array}\right]}_{\text {negative definite }}
$$

Sufficient conditions for optimality

$$
\underset{x \in \mathcal{S}}{\operatorname{minimize}} \quad f(x), \quad f: \mathbf{R}^{n} \rightarrow \mathbf{R}
$$

- $x^{*} \in \mathcal{S}$ is a strict local minimizer of $f(x)$ if

$$
\nabla f\left(x^{*}\right)=0, \quad \nabla^{2} f\left(x^{*}\right) \succ 0
$$

- $x^{*} \in \mathcal{S}$ is a strict local maximizer of $f(x)$ if

$$
\nabla f\left(x^{*}\right)=0, \quad \nabla^{2} f\left(x^{*}\right) z \prec 0
$$

- If $\nabla f\left(x^{*}\right)=0, \nabla^{2} f\left(x^{*}\right)$ is neither positive nor negative definite, it is indefinite
- x^{*} is a saddle point (not a minimizer or a maximizer)

Motivating proof

- If $\nabla f\left(x^{*}\right)=0$ and $\nabla^{2} f\left(x^{*}\right)$ is positive definite, then for any x and $z=x-x^{*}$:

$$
f(x)=f\left(x^{*}\right)+\underbrace{\nabla f\left(x^{*}\right)^{T} z}_{=0}+\underbrace{\frac{1}{2} z^{T} \nabla^{2} f\left(x^{*}\right) z}_{\text {strictly positive }}+\underbrace{O\left(\|z\|^{3}\right)}_{\text {really small }}>f\left(x^{*}\right)
$$

when x is close enough to x^{*} (local minimum)

- If $\nabla f\left(x^{*}\right)=0$ and $\nabla^{2} f\left(x^{*}\right)$ is negative definite, then for any x and $z=x-x^{*}$:

$$
f(x)=f\left(x^{*}\right)+\underbrace{\nabla f\left(x^{*}\right)^{T} z}_{=0}+\underbrace{\frac{1}{2} z^{T} \nabla^{2} f\left(x^{*}\right) z}_{\text {strictly negative }}+\underbrace{O\left(\|z\|^{3}\right)}_{\text {really small }}<f\left(x^{*}\right)
$$

when x is close enough to x^{*} (local maximum)

Convexity and optimality: 1-D

$\underset{x \in \mathcal{S}}{\operatorname{minimize}} \quad f(x), \quad f(x)$ is differentiable everywhere.

- Suppose for some point x^{*} in the interior of $\mathcal{S}, f^{\prime}\left(x^{*}\right)=0$.
- Then,
- if $f^{\prime \prime}\left(x^{*}\right)>0, x^{*}$ is a local minimum
- if $f^{\prime \prime}\left(x^{*}\right)<0, x^{*}$ is a local maximum
- if $f^{\prime \prime}\left(x^{*}\right)=0, x^{*}$ could be a local minimum, maximum, or saddle point.
- Example of third case:
- $f(x)=x^{4}, x^{*}=0$ is a local minimum
- $f(x)=-x^{4}, x^{*}=0$ is a local maximum
- $f(x)=x^{3}, x^{*}=0$ is a saddle point

Convexity and optimality: 1-D

$$
\underset{x \in \mathcal{S}}{\operatorname{minimize}} \quad f(x), \quad f(x) \quad \text { is differentiable everywhere. }
$$

Claim: If $f^{\prime \prime}(x) \geq 0$ for all $x \in \mathcal{S}$, then

$$
f^{\prime}\left(x^{*}\right)=0 \Longleftrightarrow x^{*} \quad \text { is a global minimum (maybe not unique) }
$$

Convexity and optimality: 1-D

$\underset{x \in \mathcal{S}}{\operatorname{minimize}} \quad f(x), \quad f(x)$ is differentiable everywhere. $x \in \mathcal{S}$
Claim: If $f^{\prime \prime}(x) \geq 0$ for all $x \in \mathcal{S}$, then \leftarrow We don't need strict inequality!

$$
f^{\prime}\left(x^{*}\right)=0 \Longleftrightarrow x^{*} \quad \text { is a global minimum (maybe not unique) }
$$

Convexity and optimality: 1-D

$$
\underset{x \in \mathcal{S}}{\operatorname{minimize}} \quad f(x), \quad f(x) \text { is differentiable everywhere. }
$$

Claim: If $f^{\prime \prime}(x) \geq 0$ for all $x \in \mathcal{S}$, then \leftarrow We don't need strict inequality!

$$
f^{\prime}\left(x^{*}\right)=0 \Longleftrightarrow x^{*} \quad \text { is a global minimum (maybe not unique) }
$$

Proof: use mean value theorem from calculus.

- Suppose there exists some \bar{x} where $f(\bar{x})<f\left(x^{*}\right)$
- Without loss of generality, assume $\bar{x}<x^{*}$. (Just reverse the proof otherwise.)
- By MVT, there exists $\tilde{x} \in\left(\bar{x}, x^{*}\right)$ where $f^{\prime}(\tilde{x})>0$
- By MVT, there exists $\hat{x} \in\left(\tilde{x}, x^{*}\right)$ where $f^{\prime \prime}(\hat{x})<0$
- Contradiction!

Quadratic functions

Quadratic functions

Quadratic functions over \mathbf{R}^{n} have the form

$$
f(x)=\frac{1}{2} x^{T} A x+b^{T} x+c
$$

where A is an $n \times n$ symmetric matrix, $b \in \mathbf{R}^{n}, c \in \mathbf{R}$

$$
\begin{aligned}
& n=1, \\
& n=2, \quad f(x)=\frac{1}{2} a x^{2}+b x+c, \quad A=[a] \\
& n(x)
\end{aligned} \quad=\frac{1}{2}\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right] \overbrace{\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{12} & a_{22}
\end{array}\right]}^{A}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\overbrace{\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]^{T}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+c}^{b^{T}}=\frac{1}{2} a_{11} x_{1}^{2}+\frac{1}{2} a_{22} x_{2}^{2}+a_{12} x_{1} x_{2}+b_{1} x_{1}+b_{2} x_{2}+c .
$$

Question: how to minimize $f(x)$? Local / global minimizer?

Quadratic functions and symmetry

$$
f(x)=\frac{1}{2} x^{T} A x+b^{T} x+c
$$

We can always assume without loss of generality that

$$
A=A^{T} \quad \text { (symmetric) }
$$

Suppose that $A \neq A^{T}$. Then

$$
x^{T} A x=\frac{1}{2} x^{T} A x+\frac{1}{2} x^{T} A^{T} x=\frac{1}{2} x^{T} \underbrace{\left(A+A^{T}\right)}_{\substack{\text { always } \\ \text { symm. }}} x
$$

e.g. we could replace A with $\frac{1}{2}\left(A+A^{T}\right)$ and not change the function value.

Gradients and hessians of quadratic function

$$
f(x)=\frac{1}{2} x^{T} A x+b^{T} x+c, \quad A \quad \text { is symmetric }
$$

Recall $x=x^{*}$ is a

- local minimizer if $\nabla f\left(x^{*}\right)=0$ and $\nabla^{2} f\left(x^{*}\right)$ is positive definite $\left(\nabla^{2} f\left(x^{*}\right) \succ 0\right.$

$$
\forall z \in \mathbf{R}^{n}, \quad z^{T} \nabla^{2} f\left(x^{*}\right) z>0 .
$$

- global minimizer if there is only one such point satisfying this

Note that this condition is sufficient but not necessary
Question: What is the gradient and Hessian of $f(x)$?

Gradients and hessians of quadratic function

$$
f(x)=\frac{1}{2} \underbrace{x^{T} A x}_{h(x)}+\underbrace{b^{T} x}_{g(x)}+c, \quad A \quad \text { is symmetric }
$$

Gradient and Hessian?

Gradients and hessians of quadratic function

$$
f(x)=\frac{1}{2} \underbrace{x^{T} A x}_{h(x)}+\underbrace{b^{T} x}_{g(x)}+c, \quad A \quad \text { is symmetric }
$$

Gradient and Hessian?

$$
\begin{gathered}
g(x)=b^{T} x=\sum_{i=1}^{n} b_{i} x_{i}, \quad \frac{\partial g}{\partial x_{i}}=b_{i}, \quad \frac{\partial^{2} g}{\partial x_{i} \partial x_{j}}=0 \\
\nabla g(x)=b, \quad \nabla^{2} g(x)=0
\end{gathered}
$$

Gradients and hessians of quadratic function

$$
f(x)=\frac{1}{2} \underbrace{x^{T} A x}_{h(x)}+\underbrace{b^{T} x}_{g(x)}+c, \quad A \quad \text { is symmetric }
$$

Gradient and Hessian?

$$
\begin{gathered}
h(x)=x^{T} A x=\sum_{i=1}^{n} \sum_{j \neq i} A_{i j} x_{i} x_{j}+\sum_{i=1}^{n} A_{i i} x_{i}^{2} \\
\frac{\partial h}{\partial x_{i}}=2 \sum_{j \neq i} A_{i j} x_{j}+2 A_{i i} x_{i}, \quad \frac{\partial^{2} h}{\partial x_{i} \partial x_{i}}=2 A_{i j} x_{j}+2 A_{i i} \\
\nabla h(x)=2 A x, \quad \nabla^{2} h(x)=2 A
\end{gathered}
$$

Gradients and hessians of quadratic function

$$
f(x)=\frac{1}{2} \underbrace{x^{T} A x}_{h(x)}+\underbrace{b^{T} x}_{g(x)}+c, \quad A \quad \text { is symmetric }
$$

Gradient and Hessian?

$$
\begin{gathered}
\nabla g(x)=b, \quad \nabla^{2} g(x)=0 \\
\nabla h(x)=2 A x, \\
\nabla^{2} h(x)=2 A
\end{gathered}
$$

By linearity of derivatives,

$$
\nabla f(x)=A x+b, \quad \nabla^{2} f(x)=A
$$

Gradients and hessians of quadratic function

$$
f(x)=\frac{1}{2} x^{T} A x+b^{T} x+c, \quad A \quad \text { is symmetric }
$$

Which of the following statement is true?
A. The solution to $A x=b$ are the minimizer of $f(x)$ and is unique minimizer if A is invertible.
B. $f(x)$ has a unique minimizer if A is positive definite.
C. Assume $\operatorname{null}(A) \neq\{0\}$. If x^{*} is a minimizer, then there exists an $\alpha \in \mathbf{R}$ and $d \in \mathcal{N}(A)$ such that $x^{*}+\alpha d$ is a maximizer of $f(x)$

Minimizing quadratic functions

$$
\underset{x \in \mathcal{S}}{\operatorname{minimize}} f(x)=\frac{1}{2} x^{T} A x+b^{T} x+c
$$

Gradient and Hessian

$$
\nabla f(x)=A x+b, \quad \nabla^{2} f(x)=A
$$

Finding optimal points

1. Find $x=x^{*}$ where $A x^{*}+b=0$ (stationary points).
2. From before: If $A \succ 0$, then $x=x^{*}$ is a local minimum

$$
\text { for all points } x \text { close enough to } x^{*}, \quad f(x)>f\left(x^{*}\right)
$$

3. Can we generalize to global optimality?

Let's take a closer look at A.

Positive definite and positive semidefinite matrices

Types of symmetric matrices

Consider a square symmetric matrix $A=A^{T} \in \mathbf{R}^{n \times n}$

- A is positive definite $(A \succ 0)$ if

$$
x^{T} A x>0, \quad \forall x \neq 0 \in \mathbf{R}^{n}
$$

- A is positive semidefinite $(A \succeq 0)$ if

$$
x^{T} A x \geq 0, \quad \forall x \in \mathbf{R}^{n}
$$

- The matrix A is negative definite iff $-A$ is positive definite

$$
A \prec 0 \Longleftrightarrow-A \succ 0
$$

- The matrix A is negative semidefinite iff $-A$ is positive semidefinite

$$
A \preceq 0 \Longleftrightarrow-A \succeq 0
$$

- The matrix A is indefinite if $x^{T} A x>0$ and $y^{T} A y<0$ for some $x \neq y \in \mathbf{R}^{n}$.

Example 1

$$
A=\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right]
$$

Claim: $A \succ 0$

Example 1

$$
A=\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right]
$$

Claim: $A \succ 0$ Proof:

$$
\begin{aligned}
x^{T} A x & =2 x_{1}^{2}+x_{2}^{2}-2 x_{1} x_{2} \\
& =x_{1}^{2}+\left(x_{1}^{2}-2 x_{1} x_{2}+x_{2}^{2}\right) \\
& =x_{1}^{2}+\left(x_{1}-x_{2}\right)^{2} \geq 0 \quad \text { (sum of squares) }
\end{aligned}
$$

Example 1

$$
A=\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right]
$$

Claim: $A \succ 0$ Proof:

$$
\begin{aligned}
x^{T} A x & =2 x_{1}^{2}+x_{2}^{2}-2 x_{1} x_{2} \\
& =x_{1}^{2}+\left(x_{1}^{2}-2 x_{1} x_{2}+x_{2}^{2}\right) \\
& =x_{1}^{2}+\left(x_{1}-x_{2}\right)^{2} \geq 0 \quad \text { (sum of squares) }
\end{aligned}
$$

Can $x^{T} A x=0$ for $x \neq 0$? (Why?)

Example 2

$$
A=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]
$$

This matrix is indefinite. (Why?)

Example 2

$$
A=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]
$$

This matrix is indefinite. (Why?)

$$
x^{T} A x=x_{1}^{2}+x_{2}^{2}+4 x_{1} x_{2}
$$

Pick $x=(1,1)$,

$$
x^{T} A x=6
$$

Pick $x=(1,-1)$,

$$
x^{T} A x=-2
$$

Example 3: Diagonal matrix

$$
A=\left[\begin{array}{cccc}
a_{11} & 0 & \ldots & 0 \\
0 & a_{22} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & a_{n n}
\end{array}\right] \in \mathbf{R}^{n \times n}
$$

Then

- $A \succ 0 \Longleftrightarrow a_{i i}>0$ for all i
- $A \succeq 0 \Longleftrightarrow a_{i i} \geq 0$ for all i

Proof:

Example 3: Diagonal matrix

$$
A=\left[\begin{array}{cccc}
a_{11} & 0 & \ldots & 0 \\
0 & a_{22} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & a_{n n}
\end{array}\right] \in \mathbf{R}^{n \times n}
$$

Then

- $A \succ 0 \Longleftrightarrow a_{i i}>0$ for all i
- $A \succeq 0 \Longleftrightarrow a_{i i} \geq 0$ for all i

Proof:

$$
x^{T} A x=\sum_{i=1}^{n} a_{i i} x_{i}^{2} \quad\left\{\begin{array}{lll}
>0 & \text { if } & a_{i i}>0, x \neq 0 \\
\geq 0 & \text { if } & a_{i i} \geq 0, x \neq 0
\end{array}\right.
$$

Example 3: Diagonal matrix

$$
A=\left[\begin{array}{cccc}
a_{11} & 0 & \ldots & 0 \\
0 & a_{22} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & a_{n n}
\end{array}\right] \in \mathbf{R}^{n \times n}
$$

Then

- $A \succ 0 \Longleftrightarrow a_{i i}>0$ for all i
- $A \succeq 0 \Longleftrightarrow a_{i i} \geq 0$ for all i

Proof:

$$
x^{T} A x=\sum_{i=1}^{n} a_{i i} x_{i}^{2} \quad\left\{\begin{array}{lll}
>0 & \text { if } & a_{i i}>0, x \neq 0 \\
\geq 0 & \text { if } & a_{i i} \geq 0, x \neq 0
\end{array}\right.
$$

Now suppose that $a_{i i}<0$. Then pick $x=e_{i}$.

$$
x^{T} A x=a_{i i}<0 .
$$

Eigenvalues and eigenvectors

Eigenvalues and eigenvectors

Let A be a square $n \times n$ and $x \neq 0 \in \mathbf{R}^{n}$. Then

$$
A x=\lambda x, \quad x \in \mathbf{R}^{n}, \quad \lambda \in \mathbf{R}
$$

where

- x is an eigenvector
- λ is an eigenvalue

Examples:

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]
$$

Eigenvalues and eigenvectors

Let A be a square $n \times n$ and $x \neq 0 \in \mathbf{R}^{n}$. Then

$$
A x=\lambda x, \quad x \in \mathbf{R}^{n}, \quad \lambda \in \mathbf{R}
$$

where

- x is an eigenvector
- λ is an eigenvalue

Examples:

$$
\begin{gathered}
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] \\
\lambda=1, \quad x=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \text { or } \quad \lambda=2, \quad x=\left[\begin{array}{l}
0 \\
2
\end{array}\right]
\end{gathered}
$$

Eigenvalues

Let A be a square $n \times n$ and $x \neq 0 \in \mathbf{R}^{n}$. Then

$$
A x=\lambda x, \quad x \in \mathbf{R}^{n}, \quad \lambda \in \mathbf{R}
$$

where

- x is an eigenvector
- λ is an eigenvalue

Examples:

$$
A=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

Eigenvalues

Let A be a square $n \times n$ and $x \neq 0 \in \mathbf{R}^{n}$. Then

$$
A x=\lambda x, \quad x \in \mathbf{R}^{n}, \quad \lambda \in \mathbf{R}
$$

where

- x is an eigenvector
- λ is an eigenvalue

Examples:

$$
\begin{gathered}
A=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right] \\
\lambda=3, \quad x=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \text { or } \quad \lambda=1, \quad x=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
\end{gathered}
$$

Eigenvalues

Let A be a square $n \times n$ and $x \neq 0 \in \mathbf{R}^{n}$. Then

$$
A x=\lambda x, \quad x \in \mathbf{R}^{n}, \quad \lambda \in \mathbf{R}
$$

where

- x is an eigenvector
- λ is an eigenvalue

Examples:

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 3
\end{array}\right]
$$

Eigenvalues

Let A be a square $n \times n$ and $x \neq 0 \in \mathbf{R}^{n}$. Then

$$
A x=\lambda x, \quad x \in \mathbf{R}^{n}, \quad \lambda \in \mathbf{R}
$$

where

- x is an eigenvector
- λ is an eigenvalue

Examples:

$$
\begin{gathered}
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 3
\end{array}\right] \\
\lambda=0, x=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right] \quad \text { or } \quad \lambda=2, x=\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right], \quad \text { or } \quad \lambda=8, x=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]
\end{gathered}
$$

Eigenvalues of symmetric matrices

If A is symmetric, it has n eigenvectors :

$$
A x_{1}=\lambda_{1} x_{1}, \quad A x_{2}=\lambda_{2} x_{2}, \quad \ldots, \quad A x_{n}=\lambda_{n} x_{n}
$$

Matrix form

$$
A \underbrace{\left[x_{1}, \ldots, x_{n}\right]}_{X}=\left[x_{1}, \ldots, x_{n}\right] \underbrace{\left[\begin{array}{ccc}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right]}_{\Lambda} \quad \text { or } \quad A X=X \Lambda
$$

Eigenvectors are orthogonal

$$
x_{i}^{T} x_{j}=0, \quad \forall i \neq j, \quad X^{T} X=I \Longleftrightarrow X^{-1}=X^{T} \quad \text { if normalized. }
$$

Matrix is diagonalized by eigenvectors

$$
\Lambda=X^{T} A X=\text { diagonal }
$$

Eigenvalues and definiteness

$n \times n$ matrix A is PSD (symmetric positive definite) iff all eigenvalues are positive

Proof: $X^{T} A X=\Lambda=\operatorname{diag}\left(\lambda_{1}\right)$ eigenvalues

- For any vector $z \in \mathbf{R}^{n}$, take $y=X^{T} z \Longleftrightarrow X y=z$. Then

$$
z^{T} A z=y^{T} X^{T} A X y=y^{T} \lambda y=\sum_{i=1}^{n} \lambda_{i} y_{i}^{2}
$$

- Thus, $x \neq 0, x^{T} A x>0 \Longleftrightarrow \lambda_{i}>0$ for all i
- Examples

$$
A_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right], \quad A_{2}=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right], \quad A_{3}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 3
\end{array}\right]
$$

Sufficient conditions for quadratic functions

Minimizing quadratic functions

$$
\underset{x \in \mathcal{S}}{\operatorname{minimize}} f(x)=\frac{1}{2} x^{T} A x+b^{T} x+c
$$

Gradient and Hessian

$$
\nabla f(x)=A x+b, \quad \nabla^{2} f(x)=A
$$

Finding optimal points

1. Find $x=x^{*}$ where $A x^{*}+b=0$ (stationary points).
2. If $A \succeq 0$, then $x=x^{*}$ is a global minimum
3. If $A \succ 0$, then $x=x^{*}$ is a unique global minimum

Proof:

Minimizing quadratic functions

$$
\underset{x \in \mathcal{S}}{\operatorname{minimize}} f(x)=\frac{1}{2} x^{T} A x+b^{T} x+c
$$

Gradient and Hessian

$$
\nabla f(x)=A x+b, \quad \nabla^{2} f(x)=A
$$

Finding optimal points

1. Find $x=x^{*}$ where $A x^{*}+b=0$ (stationary points).
2. If $A \succeq 0$, then $x=x^{*}$ is a global minimum
3. If $A \succ 0$, then $x=x^{*}$ is a unique global minimum

Proof: for all $x \neq x^{*}$,

$$
f(x)=f\left(x^{*}\right)+\left(x-x^{*}\right)^{T} \underbrace{\nabla f\left(x^{*}\right)}_{=0}+\underbrace{\frac{1}{2}\left(x-x^{*}\right)^{T} \overbrace{\nabla^{2} f\left(x^{*}\right)}^{=A \succeq 0}\left(x-x^{*}\right)}_{\geq 0} \geq f\left(x^{*}\right)
$$

Sufficient optimality conditions

$$
{\underset{x \in \mathcal{S}}{\operatorname{minimize}} \quad f(x), ~(x)}
$$

- $x=x^{*} \in \mathcal{S}$ is a local minimum of $f(x)$ if

$$
\nabla f\left(x^{*}\right)=0, \quad \nabla^{2} f\left(x^{*}\right) \succ 0
$$

- $x=x^{*} \in \mathcal{S}$ is a global minimum of the quadratic function

$$
f(x)=\frac{1}{2} x^{T} A x+b^{T} x+c
$$

if

$$
\nabla f\left(x^{*}\right)=0, \quad \nabla^{2} f\left(x^{*}\right)=A \succeq 0
$$

- $x=x^{*} \in \mathcal{S}$ is a global minimum of the general function $f(x)$ if

$$
\nabla f\left(x^{*}\right)=0, \quad \nabla^{2} f(x) \succeq 0 \forall x \in \mathcal{S}
$$

e.g. $f(x)$ is convex.

