
7. Unconstrained optimization and quadratic functions

• sufficient conditions

• quadratic functions

• positive definite and positive semidefinite matrices

• eigenvalues and eigenvectors

• sufficient conditions for quadratic functions



Example

minimize
x,y∈R

f(x, y) :=
x+ y

x2 + y2 + 1

How many saddles point does f(x) have?

A. 0

B. 1

C. 2



Example

minimize
x,y

f(x, y) :=
x+ y

x2 + y2 + 1

Gradient of f :

∇f(x, y) =
1

(x2 + y2 + 1)2

[
y2 − 2xy − x2 + 1
x2 − 2xy − y2 + 1

]
Where is ∇f(x, y) = 0?

(x∗, y∗) =

(
1√
2
,

1√
2

)
and (x∗, y∗) =

(
− 1√

2
,− 1√

2

)
Hessian of f at these points:

∇2f(x, y) =

[
− 1√

2
0

0 − 1√
2

]
, and ∇2f(x, y) =

[
1√
2

0

0 1√
2

]



Example

(x∗, y∗) =

(
− 1√

2
,− 1√

2

)
︸ ︷︷ ︸

minimum

and (x∗, y∗) =

(
1√
2
,

1√
2

)
︸ ︷︷ ︸

maximum

∇2f(x, y) =

[
1√
2

0

0 1√
2

]
︸ ︷︷ ︸

positive definite

and ∇2f(x, y) =

[
− 1√

2
0

0 − 1√
2

]
︸ ︷︷ ︸

negative definite



Sufficient conditions for optimality

minimize
x∈S

f(x), f : Rn → R

• x∗ ∈ S is a strict local minimizer of f(x) if

∇f(x∗) = 0, ∇2f(x∗) � 0

• x∗ ∈ S is a strict local maximizer of f(x) if

∇f(x∗) = 0, ∇2f(x∗)z ≺ 0

• If ∇f(x∗) = 0, ∇2f(x∗) is neither positive nor negative definite, it is
indefinite

• x∗ is a saddle point (not a minimizer or a maximizer)



Motivating proof

• If ∇f(x∗) = 0 and ∇2f(x∗) is positive definite, then for any x and
z = x− x∗:

f(x) = f(x∗) +∇f(x∗)T z︸ ︷︷ ︸
=0

+
1

2
zT∇2f(x∗)z︸ ︷︷ ︸

strictly positive

+ O(‖z‖3)︸ ︷︷ ︸
really small

> f(x∗)

when x is close enough to x∗ (local minimum)

• If ∇f(x∗) = 0 and ∇2f(x∗) is negative definite, then for any x and
z = x− x∗:

f(x) = f(x∗) +∇f(x∗)T z︸ ︷︷ ︸
=0

+
1

2
zT∇2f(x∗)z︸ ︷︷ ︸

strictly negative

+ O(‖z‖3)︸ ︷︷ ︸
really small

< f(x∗)

when x is close enough to x∗ (local maximum)



Convexity and optimality: 1-D

minimize
x∈S

f(x), f(x) is differentiable everywhere.

• Suppose for some point x∗ in the interior of S, f ′(x∗) = 0.

• Then,

• if f ′′(x∗) > 0, x∗ is a local minimum
• if f ′′(x∗) < 0, x∗ is a local maximum
• if f ′′(x∗) = 0, x∗ could be a local minimum, maximum, or saddle point.

• Example of third case:

• f(x) = x4, x∗ = 0 is a local minimum
• f(x) = −x4, x∗ = 0 is a local maximum
• f(x) = x3, x∗ = 0 is a saddle point



Convexity and optimality: 1-D

minimize
x∈S

f(x), f(x) is differentiable everywhere.

Claim: If f ′′(x) ≥ 0 for all x ∈ S, then

← We don’t need strict inequality!

f ′(x∗) = 0 ⇐⇒ x∗ is a global minimum (maybe not unique)

Proof: use mean value theorem from calculus.

• Suppose there exists some x̄ where f(x̄) < f(x∗)

• Without loss of generality, assume x̄ < x∗. (Just reverse the proof otherwise.)

• By MVT, there exists x̃ ∈ (x̄, x∗) where f ′(x̃) > 0

• By MVT, there exists x̂ ∈ (x̃, x∗) where f ′′(x̂) < 0

• Contradiction!
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Quadratic functions



Quadratic functions

Quadratic functions over Rn have the form

f(x) =
1

2
xTAx+ bTx+ c

where A is an n× n symmetric matrix, b ∈ Rn, c ∈ R

n = 1,

f(x) =
1

2
ax2 + bx+ c, A = [a]

n = 2,

f(x) =
1

2

[
x1 x2

] A︷ ︸︸ ︷[
a11 a12

a12 a22

] [
x1

x2

]
+

bT︷ ︸︸ ︷[
b1
b2

]T [
x1

x2

]
+ c

=
1

2
a11x

2
1 +

1

2
a22x

2
2 + a12x1x2 + b1x1 + b2x2 + c

Question: how to minimize f(x)? Local / global minimizer?



Quadratic functions and symmetry

f(x) =
1

2
xTAx+ bTx+ c

We can always assume without loss of generality that

A = AT (symmetric)

Suppose that A 6= AT . Then

xTAx =
1

2
xTAx+

1

2
xTATx =

1

2
xT (A+AT )︸ ︷︷ ︸

always
symm.

x

e.g. we could replace A with 1
2 (A+AT ) and not change the function value.



Gradients and hessians of quadratic function

f(x) =
1

2
xTAx+ bTx+ c, A is symmetric

Recall x = x∗ is a

• local minimizer if ∇f(x∗) = 0 and ∇2f(x∗) is positive definite (∇2f(x∗) � 0

∀z ∈ Rn, zT∇2f(x∗)z > 0.

• global minimizer if there is only one such point satisfying this

Note that this condition is sufficient but not necessary

Question: What is the gradient and Hessian of f(x)?



Gradients and hessians of quadratic function

f(x) =
1

2
xTAx︸ ︷︷ ︸
h(x)

+ bTx︸︷︷︸
g(x)

+c, A is symmetric

Gradient and Hessian?



Gradients and hessians of quadratic function

f(x) =
1

2
xTAx︸ ︷︷ ︸
h(x)

+ bTx︸︷︷︸
g(x)

+c, A is symmetric

Gradient and Hessian?

g(x) = bTx =

n∑
i=1

bixi,
∂g

∂xi
= bi,

∂2g

∂xi∂xj
= 0

∇g(x) = b, ∇2g(x) = 0



Gradients and hessians of quadratic function

f(x) =
1

2
xTAx︸ ︷︷ ︸
h(x)

+ bTx︸︷︷︸
g(x)

+c, A is symmetric

Gradient and Hessian?

h(x) = xTAx =

n∑
i=1

∑
j 6=i

Aijxixj +

n∑
i=1

Aiix
2
i

∂h

∂xi
= 2

∑
j 6=i

Aijxj + 2Aiixi,
∂2h

∂xi∂xi
= 2Aijxj + 2Aii

∇h(x) = 2Ax, ∇2h(x) = 2A



Gradients and hessians of quadratic function

f(x) =
1

2
xTAx︸ ︷︷ ︸
h(x)

+ bTx︸︷︷︸
g(x)

+c, A is symmetric

Gradient and Hessian?

∇g(x) = b, ∇2g(x) = 0

∇h(x) = 2Ax, ∇2h(x) = 2A

By linearity of derivatives,

∇f(x) = Ax+ b, ∇2f(x) = A



Gradients and hessians of quadratic function

f(x) =
1

2
xTAx+ bTx+ c, A is symmetric

Which of the following statement is true?

A. The solution to Ax = b are the minimizer of f(x) and is unique minimizer if
A is invertible.

B. f(x) has a unique minimizer if A is positive definite.

C. Assume null(A) 6= {0}. If x∗ is a minimizer, then there exists an α ∈ R and
d ∈ N (A) such that x∗ + αd is a maximizer of f(x)



Minimizing quadratic functions

minimize
x∈S

f(x) =
1

2
xTAx+ bTx+ c,

Gradient and Hessian

∇f(x) = Ax+ b, ∇2f(x) = A

Finding optimal points

1. Find x = x∗ where Ax∗ + b = 0 (stationary points).

2. From before: If A � 0, then x = x∗ is a local minimum

for all points x close enough to x∗, f(x) > f(x∗).

3. Can we generalize to global optimality?

Let’s take a closer look at A.



Positive definite and positive semidefinite matrices



Types of symmetric matrices

Consider a square symmetric matrix A = AT ∈ Rn×n

• A is positive definite (A � 0) if

xTAx > 0, ∀x 6= 0 ∈ Rn

• A is positive semidefinite (A � 0) if

xTAx ≥ 0, ∀x ∈ Rn

• The matrix A is negative definite iff −A is positive definite

A ≺ 0 ⇐⇒ −A � 0

• The matrix A is negative semidefinite iff −A is positive semidefinite

A � 0 ⇐⇒ −A � 0

• The matrix A is indefinite if xTAx > 0 and yTAy < 0 for some x 6= y ∈ Rn.



Example 1

A =

[
2 −1
−1 1

]

Claim: A � 0

Proof:

xTAx = 2x2
1 + x2

2 − 2x1x2

= x2
1 + (x2

1 − 2x1x2 + x2
2)

= x2
1 + (x1 − x2)2 ≥ 0 (sum of squares)

Can xTAx = 0 for x 6= 0? (Why?)
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Example 2

A =

[
1 2
2 1

]

This matrix is indefinite. (Why?)

xTAx = x2
1 + x2

2 + 4x1x2

Pick x = (1, 1),
xTAx = 6

Pick x = (1,−1),
xTAx = −2



Example 2

A =

[
1 2
2 1

]

This matrix is indefinite. (Why?)

xTAx = x2
1 + x2

2 + 4x1x2

Pick x = (1, 1),
xTAx = 6

Pick x = (1,−1),
xTAx = −2



Example 3: Diagonal matrix

A =


a11 0 . . . 0
0 a22 . . . 0
...

...
. . .

...
0 0 . . . ann

 ∈ Rn×n

Then

• A � 0 ⇐⇒ aii > 0 for all i

• A � 0 ⇐⇒ aii ≥ 0 for all i

Proof:

xTAx =
n∑

i=1

aiix
2
i

{
> 0 if aii > 0, x 6= 0

≥ 0 if aii ≥ 0, x 6= 0

Now suppose that aii < 0. Then pick x = ei.

xTAx = aii < 0.
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Eigenvalues and eigenvectors



Eigenvalues and eigenvectors

Let A be a square n× n and x 6= 0 ∈ Rn. Then

Ax = λx, x ∈ Rn, λ ∈ R

where

• x is an eigenvector

• λ is an eigenvalue

Examples:

A =

[
1 0
0 2

]

λ = 1, x =

[
1
0

]
or λ = 2, x =

[
0
2

]
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where

• x is an eigenvector

• λ is an eigenvalue

Examples:

A =

[
2 1
1 2

]

λ = 3, x =

[
1
1

]
or λ = 1, x =

[
1
−1

]



Eigenvalues

Let A be a square n× n and x 6= 0 ∈ Rn. Then

Ax = λx, x ∈ Rn, λ ∈ R

where

• x is an eigenvector

• λ is an eigenvalue

Examples:

A =

1 1 1
1 1 1
1 1 3



λ = 0, x =

 1
−1
0

 or λ = 2, x =

 1
1
−1

 , or λ = 8, x =

1
1
2





Eigenvalues

Let A be a square n× n and x 6= 0 ∈ Rn. Then

Ax = λx, x ∈ Rn, λ ∈ R

where

• x is an eigenvector

• λ is an eigenvalue

Examples:
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λ = 0, x =

 1
−1
0

 or λ = 2, x =

 1
1
−1

 , or λ = 8, x =

1
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2





Eigenvalues of symmetric matrices

If A is symmetric, it has n eigenvectors :

Ax1 = λ1x1, Ax2 = λ2x2, . . . , Axn = λnxn

Matrix form

A [x1, ..., xn]︸ ︷︷ ︸
X

= [x1, ..., xn]

λ1

. . .

λn


︸ ︷︷ ︸

Λ

or AX = XΛ

Eigenvectors are orthogonal

xTi xj = 0, ∀i 6= j, XTX = I ⇐⇒ X−1 = XT if normalized.

Matrix is diagonalized by eigenvectors

Λ = XTAX = diagonal



Eigenvalues and definiteness

n× n matrix A is PSD (symmetric positive definite) iff all eigenvalues are
positive

Proof: XTAX = Λ = diag(λ1) eigenvalues

• For any vector z ∈ Rn, take y = XT z ⇐⇒ Xy = z. Then

zTAz = yTXTAXy = yTλy =

n∑
i=1

λiy
2
i

• Thus, x 6= 0, xTAx > 0 ⇐⇒ λi > 0 for all i

• Examples

A1 =

[
1 0
0 2

]
, A2 =

[
2 1
1 2

]
, A3 =

1 1 1
1 1 1
1 1 3





Sufficient conditions for quadratic functions



Minimizing quadratic functions

minimize
x∈S

f(x) =
1

2
xTAx+ bTx+ c,

Gradient and Hessian

∇f(x) = Ax+ b, ∇2f(x) = A

Finding optimal points

1. Find x = x∗ where Ax∗ + b = 0 (stationary points).

2. If A � 0, then x = x∗ is a global minimum

3. If A � 0, then x = x∗ is a unique global minimum

Proof:

for all x 6= x∗,

f(x) = f(x∗) + (x− x∗)T ∇f(x∗)︸ ︷︷ ︸
=0

+
1

2
(x− x∗)T

=A�0︷ ︸︸ ︷
∇2f(x∗)(x− x∗)︸ ︷︷ ︸
≥0

≥ f(x∗)
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+
1

2
(x− x∗)T

=A�0︷ ︸︸ ︷
∇2f(x∗)(x− x∗)︸ ︷︷ ︸
≥0

≥ f(x∗)



Sufficient optimality conditions

minimize
x∈S

f(x)

• x = x∗ ∈ S is a local minimum of f(x) if

∇f(x∗) = 0, ∇2f(x∗) � 0

• x = x∗ ∈ S is a global minimum of the quadratic function

f(x) =
1

2
xTAx+ bTx+ c

if
∇f(x∗) = 0, ∇2f(x∗) = A � 0

• x = x∗ ∈ S is a global minimum of the general function f(x) if

∇f(x∗) = 0, ∇2f(x) � 0 ∀x ∈ S

e.g. f(x) is convex.
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