7. Unconstrained optimization and quadratic functions

sufficient conditions

quadratic functions

positive definite and positive semidefinite matrices
eigenvalues and eigenvectors

sufficient conditions for quadratic functions



Example

—_ Tty
minimize flzy) = 22 +y? + 1

How many saddles point does f(z) have?
A0

B. 1
C. 2



Example

minimize  f(x,y) := _rry
T,y Y Tt +yP+1
Gradient of f:
1 y? — 2oy —x% +1
VI = e [m2—2xy—y2+1

Where is V f(z,y) = 0?7

(ly)=<\2\}§) and (x*7y*):<_

Hessian of f at these points:

-3

_ 1 1
V2f(z,y) = [ dﬁ ], and  V?f(z,y) = l%ﬁ (1)]
V2

0
1
V2



Example

(-r*,y*)=<—\}§,—¢1§> and (x*,y*):(\}i’\}i>

minimum maximum
1 0 1 0
VQf(ma?/) = [{f 1] and V2f(aj,y) = [ (\)/§ e
V2 VG

positive definite negative definite



Sufficient conditions for optimality

minin;ize f(z), f*R" =R

(A

® z* € Sis a strict local minimizer of f(z) if

Vi) =0,  Vf(z*)>=0
® z* € Sis a strict local maximizer of f(x) if

Vf(z*) =0, V2if(z*)z2 <0

e If Vf(z*) =0, V2f(z*) is neither positive nor negative definite, it is
indefinite

® 1* is a saddle point (not a minimizer or a maximizer)



Motivating proof

o If Vf(x*) =0 and V2f(2*) is positive definite, then for any x and
z=x—z":

fl@) = f(a") + Vf(a") 2+ %ZTVW(IE*)Z + 0 0(z®) > f(a¥)
-0 —_—

—
strictly positive really small

when z is close enough to z* (local minimum)

o If Vf(x*) =0 and V2f(x*) is negative definite, then for any = and
z=x—x*:

f@)= fE) 4 VIE) 4 S TVE: o Oel) < )
-0 —_—

N——
strictly negative really small

when z is close enough to z* (local maximum)



Convexity and optimality: 1-D

miniergize f(z), f(z) is differentiable everywhere.
x

® Suppose for some point z* in the interior of S, f'(z*) = 0.
® Then,

o if f/(z*) >0, " is a local minimum
o if f/(2*) <0, 2" is a local maximum
® if f’(z*) =0, * could be a local minimum, maximum, or saddle point.

® Example of third case:

® f(z) ==z* z* =0is a local minimum

® f(z)=—x* x* =0is a local maximum
*f

—x
(z) = 23, * = 0 is a saddle point



Convexity and optimality: 1-D

minirgize f(x), f(z) is differentiable everywhere.
rE

Claim: If f”(z) > 0 for all z € S, then

f(z*) =0 <= z* s a global minimum (maybe not unique)



Convexity and optimality: 1-D

miniergize f(x), f(z) is differentiable everywhere.

Claim: If f”(z) > 0 for all z € S, then + We don't need strict inequality!

f(z*) =0 <= z* s a global minimum (maybe not unique)



Convexity and optimality: 1-D

minirgize f(x), f(z) is differentiable everywhere.

re

Claim: If f”(z) > 0 for all z € S, then + We don't need strict inequality!
f(z*) =0 <= z* s a global minimum (maybe not unique)

Proof: use mean value theorem from calculus.

® Suppose there exists some T where f(Z) < f(z*)

Without loss of generality, assume Z < z*. (Just reverse the proof otherwise.)

By MVT, there exists & € (Z,2*) where f'(Z) > 0
By MVT, there exists & € (&, z*) where f”(%) <0

Contradiction!



Quadratic functions



Quadratic functions

Quadratic functions over R™ have the form

1
flz) = §$TA3} +v'z+e

where A is an n X n symmetric matrix, b € R", c€ R

n=1,
1
f(z) = 5@3;2 +bx+c, A=]a
n=2, -—L . . )
1 b]"
_ 4 air  aiz| |21 1 1
flz) = 2 o1 @] Lllz a22] [952] - Lh] L@] e
1 1
= fa11x? + *azzfg + a12z122 + bizy + baxs + ¢

2 2

‘Question: how to minimize f(x)? Local / global minimizer?‘




Quadratic functions and symmetry

1
flz) = ia:TAa: +bvlz4c

We can always assume without loss of generality that

A=AT (symmetric)

Suppose that A # A”. Then

1 1 1
2T Ax = 2T Ax+ —2TATe = 2T (A4 AT) 2
2 2 2 —

always
symm.

e.g. we could replace A with %(A + AT) and not change the function value.



Gradients and hessians of quadratic function

1
flz) = ixTAx + 0z + ¢, A is symmetric
Recall x = z* is a
® local minimizer if Vf(z*) = 0 and V2 f(a*) is positive definite (V2f(z*) = 0
VzeR", 2IV2f(z*)z > 0.
® global minimizer if there is only one such point satisfying this

Note that this condition is sufficient but not necessary

Question: What is the gradient and Hessian of f(a:)?‘




Gradients and hessians of quadratic function

1
f(z) = 3 xZ(A)x + b(Taj +c, A is symmetric
x g(zx

Gradient and Hessian?



Gradients and hessians of quadratic function

1
f(z) = 3 x:(A)x + b(Tﬂ)c +c, A is symmetric
x g(zx

Gradient and Hessian?

n ag
= bT = b,L iy = bi7 - O
g(x) . ; i 8331 ami(‘)xj




Gradients and hessians of quadratic function

_ 1 7 T : .
f(z) = 3 xh(A):U +b\(/_$;+6, A is symmetric
T g(x

Gradient and Hessian?
h(z) = 27 Az = Z ZA”xsz + ZA“.Z'
=1 j#i

9%h
8xi8mi

oh
8331'

J#i

Vh(z) =24z,  V?h(z) =24



Gradients and hessians of quadratic function

1
f(x) = 3 l‘hT(A)l‘ + b(Ta)c +c, A is symmetric
v (x g(x

Gradient and Hessian?

Vh(z) = 2Ax, V2h(z) = 24

By linearity of derivatives,

(Vi@)=As+b,  Vf(x) = A




Gradients and hessians of quadratic function

1
f(x) = ?ETAT/ +b72 +c, A is symmetric

Which of the following statement is true?

A. The solution to Az = b are the minimizer of f(z) and is unique minimizer if
A is invertible.

B. f(z) has a unique minimizer if A is positive definite.

C. Assume null(A) # {0}. If z* is a minimizer, then there exists an a € R and
d € N(A) such that 2* + ad is a maximizer of f(z)



Minimizing quadratic functions

migien;ize f(z) = %xTAx + bz +c,
Gradient and Hessian

Vi) =Az+0b, Vf(x)=A
Finding optimal points
1. Find z = 2* where Az* + b = 0 (stationary points).

2. From before: If A >~ 0, then z = 2* is a local minimum

for all points x close enough to z*,  f(z) > f(z*).

3. Can we generalize to global optimality?

Let’'s take a closer look at A.



Positive definite and positive semidefinite matrices



Types of symmetric matrices
Consider a square symmetric matrix A = AT € R**"
® A is positive definite (A > 0) if

2T Az >0, Ve#0eR"

® A is positive semidefinite (A > 0) if

T Az >0, VreR"

The matrix A is negative definite iff —A is positive definite

A<0 << —-A=0

The matrix A is negative semidefinite iff — A is positive semidefinite

A=<0 << —-A>0

The matrix A is indefinite if 27 Az > 0 and 37 Ay < 0 for some = # y € R™.



Example 1

Claim: A= 0



Example 1

Claim: A > 0 Proof:

tTAx = 223 4 23 — 2119
= 22+ (2 — 219 + 23)

= 234 (x1 —22)? >0

(sum of squares)



Example 1

Claim: A > 0 Proof:

e"Az = 2z} + a3 — 22120
= i+ (2] — 2w135 + 23)

= 224 (1 —22)2>0 (sum of squares)

Can 27 Az = 0 for x # 07 (Why?)



Example 2

]

This matrix is indefinite. (Why?)



Example 2

This matrix is indefinite. (Why?)

2T Ax = ij + x% + 4x170

Pick x = (1,1),
T Az =6

Pick z = (1,-1),
2T Ax = -2



Example 3: Diagonal matrix

a1 0 0
0 a99 0

A — ] . . ] c Rn><n
0 0 Ann

Then

® A>0 < a;; >0foralli
® A>-0 < a;; >0foralli

Proof:



Example 3: Diagonal matrix

a1 0 0
0 a9 0

A — ] . . ] c Rn><n
0 0 Ann

Then
® A>0 < a;; >0foralli
® A>-0 < a;; >0foralli
Proof:

xTA(E = Za“$3 >0 I Q5 > O,J) 7é 0
i=1 >0 if a;>0,2#0



Example 3: Diagonal matrix

a1 0 0
0 a9 0
A= ,
0 0 Ann

Then
® A>0 < a;; >0foralli
® A>-0 < a;; >0foralli

Proof:
f

if

T - 2 >0
x Ax = E Qi X5
i=1 {Z 0

Now suppose that a;; < 0. Then pick x = e;.

2T Az = aq; < 0.

G R’I’LXn

aii>0,x7é0
ag; > 0,2 #0



Eigenvalues and eigenvectors



Eigenvalues and eigenvectors

Let A be a square n x nand x #0 € R™. Then
Az =Xz, z€R", AeR
where

® 1 is an eigenvector

® ) is an eigenvalue

Examples:

fp ]
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Examples:



Eigenvalues

Let A be a square n x nand x # 0 € R™. Then
Az =Xz, z€R", AeR
where

® 1 is an eigenvector

® ) is an eigenvalue

Examples:



Eigenvalues

Let A be a square n x nand x # 0 € R™. Then

Az =Xz, z€R", AeR

where

® 1 is an eigenvector

® ) is an eigenvalue

Examples:

A =3, x—[l} or




Eigenvalues

Let A be a square n x nand x #0 € R™. Then
Az =Xz, z€R", AeR
where

® 1 is an eigenvector

® ) is an eigenvalue

Examples:

h
Il
—_
—_ =
Lo = =



Eigenvalues

Let A be a square n x nand x #0 € R™. Then
Az =Xz, z€R", AeR
where

® 1 is an eigenvector

® ) is an eigenvalue

Examples:
1 1 1
A=11 1 1
1 1 3
1 1
A=0,z= -1 or A=2,z=|11|,

or




Eigenvalues of symmetric matrices

If A is symmetric, it has n eigenvectors :

Aﬂil = )\13)1, Aﬂig = )\23)2, ey Al‘n = /\nﬂin
Matrix form
A1
Az, o, @p] = [21, oy Tp] or AX = XA
————
X An
—_— ——
A

Eigenvectors are orthogonal

€Ty

ij =0, Vi#j, X'X=I < X '=XT if normalized.
Matrix is diagonalized by eigenvectors

A=XTAX =  diagonal



Eigenvalues and definiteness

n x n matrix A is PSD (symmetric positive definite) iff all eigenvalues are
positive

Proof: XTAX = A = diag()\,) eigenvalues

® For any vector z € R", take y = X7z <= Xy = 2. Then

Az =y T XTAXy = yThy =Y Ny
i=1

® Thus, £ #0, 7 Az >0 < )\; >0 forall s

® Examples

1 0 2 1
A1|:O 2}7 AQL 2}, Az =

== =
— =
LW = =



Sufficient conditions for quadratic functions



Minimizing quadratic functions

1
migiergize flx) = §xTAx +blz 4,

Gradient and Hessian

V()= Az +b, V()= A
Finding optimal points
1. Find = z* where Az* + b = 0 (stationary points).
2. If A >0, then x = z* is a global minimum

3. If A 0, then x = z* is a unique global minimum

Proof:



Minimizing quadratic functions

1
migiergize flx) = §xTAx +blz 4,

Gradient and Hessian

V()= Az +b, V()= A
Finding optimal points
1. Find = z* where Az* + b = 0 (stationary points).
2. If A >0, then x = z* is a global minimum

3. If A 0, then x = z* is a unique global minimum

Proof: for all z # z*,

=Ax0
f@) = f(z*) + (& —2")T Vf(z") + %(w — 2T V2 f(a*) (2 —a¥) > f(a*)
——

=0 0



Sufficient optimality conditions

minimize f(x)

® ¢ =z* €S is a local minimum of f(z) if
Vix*)=0, V2f(x*) =0
® =" € S is a global minimum of the quadratic function

fz) = %ZL‘TA:E +bolz4c

Vf(z*)=0, V2f(z*)=A>0
® ¢ =z* € Sis a global minimum of the general function f(x) if
Vf(z*) =0, V2f(z)=0VzeS

e.g. f(x) is convex.
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