7. Unconstrained optimization and quadratic functions

- sufficient conditions
- quadratic functions
- positive definite and positive semidefinite matrices
- eigenvalues and eigenvectors
- sufficient conditions for quadratic functions

$$\label{eq:generalized} \begin{array}{ll} \underset{x,y\in\mathbf{R}}{\text{minimize}} & f(x,y):=\frac{x+y}{x^2+y^2+1}\\ \\ \text{How many saddles point does } f(x) \text{ have?} \end{array}$$

A. 0

B. 1

C. 2

minimize
$$f(x,y) := \frac{x+y}{x^2+y^2+1}$$

Gradient of f:

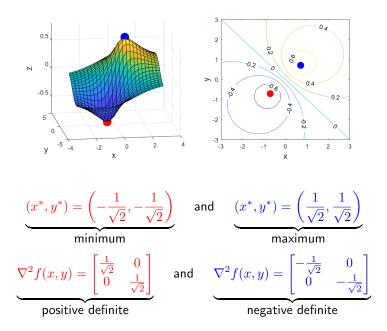
$$\nabla f(x,y) = \frac{1}{(x^2 + y^2 + 1)^2} \begin{bmatrix} y^2 - 2xy - x^2 + 1\\ x^2 - 2xy - y^2 + 1 \end{bmatrix}$$

Where is $\nabla f(x,y) = 0$?

$$(x^*,y^*)=\left(rac{1}{\sqrt{2}},rac{1}{\sqrt{2}}
ight) \quad ext{and} \quad (x^*,y^*)=\left(-rac{1}{\sqrt{2}},-rac{1}{\sqrt{2}}
ight)$$

Hessian of f at these points:

$$\nabla^2 f(x,y) = \begin{bmatrix} -\frac{1}{\sqrt{2}} & 0\\ 0 & -\frac{1}{\sqrt{2}} \end{bmatrix}, \quad \text{and} \quad \nabla^2 f(x,y) = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0\\ 0 & \frac{1}{\sqrt{2}} \end{bmatrix}$$



Sufficient conditions for optimality

$$\underset{x \in \mathcal{S}}{\text{minimize}} \quad f(x), \qquad f: \mathbf{R}^n \to \mathbf{R}$$

• $x^* \in S$ is a strict local minimizer of f(x) if

$$\nabla f(x^*) = 0, \qquad \nabla^2 f(x^*) \succ 0$$

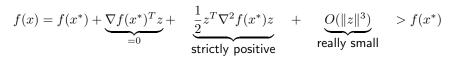
• $x^* \in \mathcal{S}$ is a strict local maximizer of f(x) if

$$\nabla f(x^*) = 0, \qquad \nabla^2 f(x^*) z \prec 0$$

- If $\nabla f(x^*) = 0$, $\nabla^2 f(x^*)$ is neither positive nor negative definite, it is indefinite
 - x^* is a saddle point (not a minimizer or a maximizer)

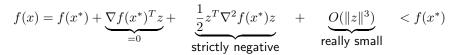
Motivating proof

• If $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive definite, then for any x and $z = x - x^*$:



when x is close enough to x^* (local minimum)

• If $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is negative definite, then for any x and $z = x - x^*$:



when x is close enough to x^* (local maximum)

 $\underset{x \in \mathcal{S}}{\text{minimize}} \quad f(x), \qquad f(x) \quad \text{is differentiable everywhere.}$

- Suppose for some point x^* in the interior of S, $f'(x^*) = 0$.
- Then,
 - if $f''(x^*) > 0$, x^* is a local minimum
 - if $f''(x^*) < 0$, x^* is a local maximum
 - if $f''(x^*) = 0$, x^* could be a local minimum, maximum, or saddle point.
- Example of third case:
 - $f(x) = x^4$, $x^* = 0$ is a local minimum
 - $f(x) = -x^4$, $x^* = 0$ is a local maximum
 - $f(x) = x^3$, $x^* = 0$ is a saddle point

 $\label{eq:generalized} \begin{array}{ll} \underset{x\in\mathcal{S}}{\text{minimize}} & f(x), & f(x) \mbox{ is differentiable everywhere.} \\ \\ \text{Claim: If } f''(x) \geq 0 \mbox{ for all } x\in\mathcal{S}, \mbox{ then} \end{array}$

 $f'(x^*) = 0 \iff x^*$ is a global minimum (maybe not unique)

 $\label{eq:constraint} \begin{array}{ll} \underset{x \in \mathcal{S}}{\text{minimize}} & f(x), & f(x) & \text{is differentiable everywhere.} \\ \\ \text{Claim: If } f''(x) \geq 0 \text{ for all } x \in \mathcal{S} \text{, then } & \leftarrow \text{We don't need strict inequality!} \end{array}$

 $f'(x^*) = 0 \iff x^*$ is a global minimum (maybe not unique)

 $\begin{array}{ll} \underset{x \in \mathcal{S}}{\text{minimize}} & f(x), & f(x) & \text{is differentiable everywhere.} \\ \\ \text{Claim: If } f''(x) \geq 0 & \text{for all } x \in \mathcal{S}, \text{ then } \leftarrow \text{We don't need strict inequality!} \end{array}$

 $f'(x^*) = 0 \iff x^*$ is a global minimum (maybe not unique)

Proof: use mean value theorem from calculus.

- Suppose there exists some \bar{x} where $f(\bar{x}) < f(x^*)$
- Without loss of generality, assume $\bar{x} < x^*$. (Just reverse the proof otherwise.)
- By MVT, there exists $\tilde{x} \in (\bar{x},x^*)$ where $f'(\tilde{x}) > 0$
- By MVT, there exists $\hat{x} \in (\tilde{x}, x^*)$ where $f^{\prime\prime}(\hat{x}) < 0$
- Contradiction!

Quadratic functions

Quadratic functions

Quadratic functions over \mathbf{R}^n have the form

$$f(x) = \frac{1}{2}x^T A x + b^T x + c$$

where A is an $n\times n$ symmetric matrix, $b\in {\bf R}^n,\, c\in {\bf R}$

n = 1, $f(x) = \frac{1}{2}ax^{2} + bx + c, \quad A = [a]$ n = 2, $f(x) = \frac{1}{2}[x_{1} \quad x_{2}]\overbrace{\begin{bmatrix}a_{11} & a_{12}\\a_{12} & a_{22}\end{bmatrix}}^{A} \begin{bmatrix}x_{1}\\x_{2}\end{bmatrix} + \overbrace{\begin{bmatrix}b_{1}\\b_{2}\end{bmatrix}}^{T} \begin{bmatrix}x_{1}\\x_{2}\end{bmatrix} + c$ $= \frac{1}{2}a_{11}x_{1}^{2} + \frac{1}{2}a_{22}x_{2}^{2} + a_{12}x_{1}x_{2} + b_{1}x_{1} + b_{2}x_{2} + c$

Question: how to minimize f(x)? Local / global minimizer?

Quadratic functions and symmetry

$$f(x) = \frac{1}{2}x^T A x + b^T x + c$$

We can always assume without loss of generality that

 $A = A^T$ (symmetric)

Suppose that $A \neq A^T$. Then

$$x^{T}Ax = \frac{1}{2}x^{T}Ax + \frac{1}{2}x^{T}A^{T}x = \frac{1}{2}x^{T}\underbrace{(A+A^{T})}_{\text{always}}x$$

e.g. we could replace A with $\frac{1}{2}(A + A^T)$ and not change the function value.

$$f(x) = \frac{1}{2} x^T A x + b^T x + c, \qquad A \quad \mbox{ is symmetric}$$
 Recall $x = x^*$ is a

• local minimizer if $\nabla f(x^*)=0$ and $\nabla^2 f(x^*)$ is positive definite $(\nabla^2 f(x^*)\succ 0$

$$\forall z \in \mathbf{R}^n, \quad z^T \nabla^2 f(x^*) z > 0.$$

• global minimizer if there is only one such point satisfying this

Note that this condition is **sufficient** but **not necessary**

Question: What is the gradient and Hessian of f(x)?

$$f(x) = \frac{1}{2} \underbrace{x^T A x}_{h(x)} + \underbrace{b^T x}_{g(x)} + c, \qquad A \quad \text{ is symmetric}$$

Gradient and Hessian?

$$f(x) = \frac{1}{2} \underbrace{x^T A x}_{h(x)} + \underbrace{b^T x}_{g(x)} + c, \qquad A \quad \text{ is symmetric}$$

Gradient and Hessian?

$$g(x) = b^T x = \sum_{i=1}^n b_i x_i, \qquad \frac{\partial g}{\partial x_i} = b_i, \qquad \frac{\partial^2 g}{\partial x_i \partial x_j} = 0$$
$$\nabla g(x) = b, \qquad \nabla^2 g(x) = 0$$

$$f(x) = \frac{1}{2} \underbrace{x^T A x}_{h(x)} + \underbrace{b^T x}_{g(x)} + c, \qquad A \quad \text{is symmetric}$$

Gradient and Hessian?

$$h(x) = x^{T} A x = \sum_{i=1}^{n} \sum_{j \neq i} A_{ij} x_{i} x_{j} + \sum_{i=1}^{n} A_{ii} x_{i}^{2}$$

$$\frac{\partial h}{\partial x_i} = 2\sum_{j \neq i} A_{ij} x_j + 2A_{ii} x_i, \qquad \frac{\partial^2 h}{\partial x_i \partial x_i} = 2A_{ij} x_j + 2A_{ii}$$

$$abla h(x) = 2Ax, \qquad \nabla^2 h(x) = 2A$$

$$f(x) = \frac{1}{2} \underbrace{x^T A x}_{h(x)} + \underbrace{b^T x}_{g(x)} + c, \qquad A \quad \text{ is symmetric}$$

Gradient and Hessian?

$$\nabla g(x) = b, \qquad \nabla^2 g(x) = 0$$

$$\nabla h(x) = 2Ax, \qquad \nabla^2 h(x) = 2A$$

By linearity of derivatives,

$$\nabla f(x) = Ax + b, \qquad \nabla^2 f(x) = A$$

$$f(x) = \frac{1}{2}x^TAx + b^Tx + c,$$
 A is symmetric

Which of the following statement is true?

- A. The solution to Ax = b are the minimizer of f(x) and is unique minimizer if A is invertible.
- B. f(x) has a unique minimizer if A is positive definite.
- C. Assume null(A) \neq {0}. If x^* is a minimizer, then there exists an $\alpha \in \mathbf{R}$ and $d \in \mathcal{N}(A)$ such that $x^* + \alpha d$ is a maximizer of f(x)

Minimizing quadratic functions

$$\underset{x \in \mathcal{S}}{\text{minimize}} \ f(x) = \frac{1}{2}x^T A x + b^T x + c,$$

Gradient and Hessian

$$\nabla f(x) = Ax + b, \quad \nabla^2 f(x) = A$$

Finding optimal points

- 1. Find $x = x^*$ where $Ax^* + b = 0$ (stationary points).
- 2. From before: If $A \succ 0$, then $x = x^*$ is a **local minimum**

for all points x close enough to x^* , $f(x) > f(x^*)$.

3. Can we generalize to global optimality?

Let's take a closer look at A.

Positive definite and positive semidefinite matrices

Types of symmetric matrices

Consider a square symmetric matrix $A = A^T \in \mathbf{R}^{n \times n}$

• A is positive definite $(A \succ 0)$ if

$$x^T A x > 0, \quad \forall x \neq 0 \in \mathbf{R}^n$$

• A is positive semidefinite $(A \succeq 0)$ if

$$x^T A x \ge 0, \quad \forall x \in \mathbf{R}^n$$

• The matrix A is **negative** definite iff -A is **positive** definite

$$A \prec 0 \iff -A \succ 0$$

• The matrix A is **negative** semidefinite iff -A is **positive** semidefinite

$$A \preceq 0 \iff -A \succeq 0$$

• The matrix A is indefinite if $x^T A x > 0$ and $y^T A y < 0$ for some $x \neq y \in \mathbf{R}^n$.

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$$

Claim: $A \succ 0$

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$$

Claim: $A \succ 0$ Proof:

$$\begin{aligned} x^T A x &= 2x_1^2 + x_2^2 - 2x_1 x_2 \\ &= x_1^2 + (x_1^2 - 2x_1 x_2 + x_2^2) \\ &= x_1^2 + (x_1 - x_2)^2 \ge 0 \quad \text{(sum of squares)} \end{aligned}$$

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$$

Claim: $A \succ 0$ Proof:

$$\begin{aligned} x^T A x &= 2x_1^2 + x_2^2 - 2x_1 x_2 \\ &= x_1^2 + (x_1^2 - 2x_1 x_2 + x_2^2) \\ &= x_1^2 + (x_1 - x_2)^2 \ge 0 \quad \text{(sum of squares)} \end{aligned}$$

Can $x^T A x = 0$ for $x \neq 0$? (Why?)

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$

This matrix is indefinite. (Why?)

$$A = \begin{bmatrix} 1 & 2\\ 2 & 1 \end{bmatrix}$$

This matrix is indefinite. (Why?)

$$\label{eq:alpha} x^TAx = x_1^2 + x_2^2 + 4x_1x_2$$
 Pick $x=(1,1),$
$$x^TAx = 6$$

Pick x = (1, -1), $x^T A x = -2$

Example 3: Diagonal matrix

$$A = \begin{bmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{bmatrix} \in \mathbf{R}^{n \times n}$$

Then

- $\bullet \ A \succ 0 \iff a_{ii} > 0 \text{ for all } i$
- $A \succeq 0 \iff a_{ii} \ge 0$ for all i

Proof:

Example 3: Diagonal matrix

$$A = \begin{bmatrix} a_{11} & 0 & \dots & 0\\ 0 & a_{22} & \dots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \dots & a_{nn} \end{bmatrix} \in \mathbf{R}^{n \times n}$$

Then

•
$$A \succ 0 \iff a_{ii} > 0$$
 for all i

•
$$A \succeq 0 \iff a_{ii} \ge 0$$
 for all i

Proof:

$$x^{T}Ax = \sum_{i=1}^{n} a_{ii}x_{i}^{2} \quad \begin{cases} > 0 & \text{if} \quad a_{ii} > 0, x \neq 0 \\ \ge 0 & \text{if} \quad a_{ii} \ge 0, x \neq 0 \end{cases}$$

Example 3: Diagonal matrix

$$A = \begin{bmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{bmatrix} \in \mathbf{R}^{n \times n}$$

Then

•
$$A \succ 0 \iff a_{ii} > 0$$
 for all i

•
$$A \succeq 0 \iff a_{ii} \ge 0$$
 for all i

Proof:

$$x^{T}Ax = \sum_{i=1}^{n} a_{ii}x_{i}^{2} \quad \begin{cases} > 0 & \text{if} \quad a_{ii} > 0, x \neq 0 \\ \ge 0 & \text{if} \quad a_{ii} \ge 0, x \neq 0 \end{cases}$$

Now suppose that $a_{ii} < 0$. Then pick $x = e_i$.

$$x^T A x = a_{ii} < 0.$$

Eigenvalues and eigenvectors

Eigenvalues and eigenvectors

Let A be a square $n\times n$ and $x\neq 0\in {\bf R}^n.$ Then $Ax=\lambda x,\quad x\in {\bf R}^n,\quad \lambda\in {\bf R}$ where

- x is an eigenvector
- λ is an eigenvalue

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

Eigenvalues and eigenvectors

Let A be a square $n\times n$ and $x\neq 0\in {\bf R}^n.$ Then $Ax=\lambda x,\quad x\in {\bf R}^n,\quad \lambda\in {\bf R}$ where

- x is an eigenvector
- λ is an eigenvalue

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$
$$\lambda = 1, \quad x = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \text{or} \quad \lambda = 2, \quad x = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$

Let A be a square $n \times n$ and $x \neq 0 \in \mathbf{R}^n$. Then

 $Ax = \lambda x, \quad x \in \mathbf{R}^n, \quad \lambda \in \mathbf{R}$

where

- x is an eigenvector
- λ is an eigenvalue

$$A = \begin{bmatrix} 2 & 1\\ 1 & 2 \end{bmatrix}$$

Let A be a square $n\times n$ and $x\neq 0\in {\bf R}^n.$ Then $Ax=\lambda x,\quad x\in {\bf R}^n,\quad \lambda\in {\bf R}$

where

- x is an eigenvector
- λ is an eigenvalue

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
$$\lambda = 3, \quad x = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \text{or} \quad \lambda = 1, \quad x = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Let A be a square $n \times n$ and $x \neq 0 \in \mathbf{R}^n$. Then

 $Ax = \lambda x, \quad x \in \mathbf{R}^n, \quad \lambda \in \mathbf{R}$

where

- x is an eigenvector
- λ is an eigenvalue

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 3 \end{bmatrix}$$

Let A be a square $n \times n$ and $x \neq 0 \in \mathbf{R}^n$. Then

 $Ax = \lambda x, \quad x \in \mathbf{R}^n, \quad \lambda \in \mathbf{R}$

where

- x is an eigenvector
- λ is an eigenvalue

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 3 \end{bmatrix}$$
$$\lambda = 0, \ x = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \quad \text{or} \quad \lambda = 2, \ x = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}, \quad \text{or} \quad \lambda = 8, \ x = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$

Eigenvalues of symmetric matrices

If A is symmetric, it has n eigenvectors :

$$Ax_1 = \lambda_1 x_1, \quad Ax_2 = \lambda_2 x_2, \quad \dots, \quad Ax_n = \lambda_n x_n$$

Matrix form

$$A\underbrace{[x_1,...,x_n]}_X = [x_1,...,x_n] \underbrace{\begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}}_{\Lambda} \quad \text{or} \quad AX = X\Lambda$$

Eigenvectors are orthogonal

$$x_i^T x_j = 0, \quad \forall i \neq j, \quad X^T X = I \iff X^{-1} = X^T \quad \text{if normalized}$$

Matrix is diagonalized by eigenvectors

$$\Lambda = X^T A X =$$
diagonal

Eigenvalues and definiteness

 $n \times n$ matrix A is PSD (symmetric positive definite) iff all eigenvalues are positive

Proof: $X^T A X = \Lambda = \mathbf{diag}(\lambda_1)$ eigenvalues

• For any vector $z\in \mathbf{R}^n$, take $y=X^Tz\iff Xy=z.$ Then

$$z^{T}Az = y^{T}X^{T}AXy = y^{T}\lambda y = \sum_{i=1}^{n} \lambda_{i}y_{i}^{2}$$

• Thus,
$$x \neq 0$$
, $x^T A x > 0 \iff \lambda_i > 0$ for all i

$$A_1 = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, \qquad A_2 = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}, \qquad A_3 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 3 \end{bmatrix}$$

Sufficient conditions for quadratic functions

Minimizing quadratic functions

$$\underset{x \in \mathcal{S}}{\text{minimize}} \ f(x) = \frac{1}{2}x^T A x + b^T x + c,$$

Gradient and Hessian

$$\nabla f(x) = Ax + b, \quad \nabla^2 f(x) = A$$

Finding optimal points

- 1. Find $x = x^*$ where $Ax^* + b = 0$ (stationary points).
- 2. If $A \succeq 0$, then $x = x^*$ is a global minimum
- 3. If $A \succ 0$, then $x = x^*$ is a **unique** global minimum

Proof:

Minimizing quadratic functions

$$\underset{x \in \mathcal{S}}{\text{minimize}} f(x) = \frac{1}{2}x^T A x + b^T x + c,$$

Gradient and Hessian

$$\nabla f(x) = Ax + b, \quad \nabla^2 f(x) = A$$

Finding optimal points

- 1. Find $x = x^*$ where $Ax^* + b = 0$ (stationary points).
- 2. If $A \succeq 0$, then $x = x^*$ is a global minimum
- 3. If $A \succ 0$, then $x = x^*$ is a **unique** global minimum

Proof: for all $x \neq x^*$,

$$f(x) = f(x^*) + (x - x^*)^T \underbrace{\nabla f(x^*)}_{=0} + \underbrace{\frac{1}{2}(x - x^*)^T \underbrace{\nabla^2 f(x^*)}_{\geq 0}(x - x^*)}_{\geq 0} \ge f(x^*)$$

Sufficient optimality conditions

 $\underset{x \in \mathcal{S}}{\text{minimize}} \quad f(x)$

• $x = x^* \in S$ is a local minimum of f(x) if

$$\nabla f(x^*) = 0, \qquad \nabla^2 f(x^*) \succ 0$$

• $x = x^* \in S$ is a global minimum of the quadratic function

$$f(x) = \frac{1}{2}x^T A x + b^T x + c$$

		r	
1	đ	F.	

$$\nabla f(x^*) = 0, \qquad \nabla^2 f(x^*) = A \succeq 0$$

• $x = x^* \in S$ is a global minimum of the general function f(x) if

$$\nabla f(x^*) = 0, \qquad \nabla^2 f(x) \succeq 0 \ \forall x \in \mathcal{S}$$

e.g. f(x) is convex.