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Positive definite and positive semidefinite matrices



Types of symmetric matrices

Consider a square symmetric matrix A = AT 2 Rn⇥n

• A is positive definite (A � 0) if

xTAx > 0, 8x 6= 0 2 Rn

• A is positive semidefinite (A ⌫ 0) if

xTAx � 0, 8x 2 Rn

• The matrix A is negative definite i↵ �A is positive definite

A � 0 () �A � 0

• The matrix A is negative semidefinite i↵ �A is positive semidefinite

A � 0 () �A ⌫ 0

• The matrix A is indefinite if xTAx > 0 and yTAy < 0 for some x 6= y 2 Rn
.



Example 1

A =


2 �1
�1 1

�

Claim: A � 0

Proof:

xTAx = 2x2
1 + x2

2 � 2x1x2

= x2
1 + (x2

1 � 2x1x2 + x2
2)

= x2
1 + (x1 � x2)

2 � 0 (sum of squares)

Can xTAx = 0 for x 6= 0? (Why?)
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Example 2

A =


1 2
2 1

�

This matrix is indefinite. (Why?)

xTAx = x2
1 + x2

2 + 4x1x2

Pick x = (1, 1),
xTAx = 6

Pick x = (1,�1),
xTAx = �2
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Example 3: Diagonal matrix

A =

2

6664

a11 0 . . . 0
0 a22 . . . 0
.
.
.

.

.

.
. . .

.

.

.

0 0 . . . ann

3

7775
2 Rn⇥n

Then

• A � 0 () aii > 0 for all i

• A ⌫ 0 () aii � 0 for all i

Proof:

xTAx =
nX

i=1

aiix
2
i

(
> 0 if aii > 0, x 6= 0

� 0 if aii � 0, x 6= 0

Now suppose that aii < 0. Then pick x = ei.

xTAx = aii < 0.
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Diagonal dominant matrices .

A symmetric matrix
A EIR

" 'm
is

1- diagonally dominant if

laid 27¥. IAijl
2 . strictly diagonally dominant if

IAiil > If; IAij I

Eg : A-



Diagonally dominantmatrix .

Let AEIRMM be a symmetric matrix .

1- A is positive semidefinite if

Ai; 20 for all i c- {t, . . .,n }
and A

is diagonally dominant
'

2. A- is positive definite if diagonal elements

are positive and A- is strictly diagonal
dominant -

es : A A-



Eigenvalues and eigenvectors



Eigenvalues and eigenvectors

Let A be a square n⇥ n and x 6= 0 2 Rn
. Then

Ax = �x, x 2 Rn, � 2 R

where

• x is an eigenvector

• � is an eigenvalue

Examples:

A =


1 0
0 2

�

� = 1, x =


1
0

�
or � = 2, x =


0
2

�

see NCA- x⇒
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Eigenvalues of symmetric matrices

If A is symmetric, it has n eigenvectors :

Ax1 = �1x1, Ax2 = �2x2, . . . , Axn = �nxn

Matrix form

A [x1, ..., xn]| {z }
X

= [x1, ..., xn]

2

64
�1

. . .

�n

3

75

| {z }
⇤

or AX = X⇤

Eigenvectors are orthogonal

xT
i xj = 0, 8i 6= j, XTX = I () X�1 = XT

if normalized.

Matrix is diagonalized by eigenvectors

⇤ = XTAX = diagonal

for orthonormal X , xTX= I
XXTII

Them : Assume CX,xx) order
, xD as eigepairs of A .

If 7*8 then 7,5×0=0

Amatrix A- is diagonal}able if F on invertible
matrix P sit' D= p

- 'Ap .



Eigenvalues and definiteness

n⇥n symmetric matrix A is PD (positive definite) i↵ all eigenvalues are positive

Proof: XTAX = ⇤ = diag(�) eigenvalues

• For any vector z 2 Rn
, take y = XT z () Xy = z. Then

zTAz = yTXTAXy = yT�y =
nX

i=1

�iy
2
i

• Thus, x 6= 0, xTAx > 0 () �i > 0 for all i

• Examples

A1 =


1 0
0 2

�
, A2 =


2 1
1 2

�
, A3 =

2

4
1 1 1
1 1 1
1 1 3

3

5

D



Su�cient conditions for quadratic functions



Minimizing quadratic functions

minimize
x2S

f(x) =
1

2
xTAx+ bTx+ c,

Gradient and Hessian

rf(x) = Ax+ b, r2f(x) = A

Finding optimal points

1. Find x = x⇤
where Ax⇤ + b = 0 (stationary points).

2. If A ⌫ 0, then x = x⇤
is a global minimum

3. If A � 0, then x = x⇤
is a unique global minimum

Proof:

for all x 6= x⇤
,

f(x) = f(x⇤) + (x� x⇤)T rf(x⇤)| {z }
=0

+
1

2
(x� x⇤)T

=A⌫0z }| {
r2f(x⇤)(x� x⇤)

| {z }
�0

� f(x⇤)
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Su�cient optimality conditions

minimize
x2S

f(x)

• x = x⇤ 2 S is a local minimum of f(x) if

rf(x⇤) = 0, r2f(x⇤) � 0

• x = x⇤ 2 S is a global minimum of the quadratic function

f(x) =
1

2
xTAx+ bTx+ c

if

rf(x⇤) = 0, r2f(x⇤) = A ⌫ 0

• x = x⇤ 2 S is a global minimum of the general function f(x) if

rf(x⇤) = 0, r2f(x) ⌫ 0 8x 2 S

e.g. f(x) is convex.

feet{ asetbox +c
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