Convex sets

- Affine sets
- Convex sets
- Examples.

Affine sets.
A line through the distinct points $x, y \in \mathbb{R}^{n}$

$$
S=\{z \mid z=\theta x+(1-\theta) y, \quad \theta \in \mathbb{R}\}
$$

Affine set contains all be

through one distinct point in the set

$$
x, y \in S \Leftrightarrow \theta x+(1-\theta) y=z \in S, \quad \forall \theta \in \mathbb{R}
$$

Example: The solution set of linear equations: $S=\{x \mid A x=b\}$.
$x, y \in S, \theta x+(1-\theta) y=z$ satisfies $A z=b$.

Convex combination.
live segmat between one two points $\gg y \in \mathbb{R}^{n}$ is:

$$
z=\theta x+(1-\theta) y, 0 \leq \theta \leq 1
$$

x is a convex combination of x_{1}, \ldots, x_{n} if $x=\theta_{1} x_{1}+\theta_{2} x_{2}+\cdots+\theta_{n} x_{n}=\sum_{i=1}^{n} \theta_{i} x_{i}$ and $\sum_{i=1}^{n} \theta_{i}=1$ with $\theta_{i} \geqslant 0$

The convex hull of S contains all convex combinations of points S

$$
\operatorname{co} S=\left\{z=\sum_{i=1}^{n} \theta_{i} x_{i} \mid x_{i} \in S, \quad \sum_{i=1}^{n} \theta_{i}=1, \theta_{i} \geqslant 0\right\}
$$

Convex sed.
$S \in \mathbb{R}^{n}$ is a convex if it contains all couvex conbinetions of poict in S.

$$
x, y \in S \Leftrightarrow 0 \leq \theta \leq 1, \quad \theta x+(1-\theta) y \in S
$$

Example:

convex

nottomex

Linear see.
S is a subspace if

- $0 \in S$
- closed under add ion
- closed under scalar multiple cation.
S is the subspace containing two distinct points $x, y \in \mathbb{R}^{n}$

$$
S=\left\{z / z=\alpha x+(1-\beta) y, \mathbb{R}^{n}, \alpha, f \in \mathbb{R}\right\} .
$$

A linear set contains all lis troongh distant pout in the set

$$
x \in S, y \in S \Leftrightarrow \alpha x+\beta y=z \in S, \quad \forall \alpha, \beta \in \mathbb{R}
$$

Linear sets are affine but afire sit are not aluangs linear

Example: The range and null space

lina

Halt spare and hyper planes.
hyper plane: set of the form $\left\{x / a^{\top} x=b\right\}$.
half spare: set of the farm

$$
\left\{x \mid a^{\top} x \leq b\right\} .
$$

- $a \neq 0$ is a nasal venter.

- hypaplene are affine ad convex.
pick $x, y \in S, a^{\top}[\theta x+(1-\theta) y]$

$$
\begin{aligned}
& =\theta b+(1-\theta) b \\
& =b \quad \text { if } \theta \in[0,1] \\
& \Rightarrow \theta x+(1-\theta) y \in S
\end{aligned}
$$

- half space are convex but are not affine.
- Example: The non-negative or thant

$$
R_{t}^{n}=\left\{x: x_{i} \geq 0 \text { for } i=1, \ldots, n\right\} \text {. }
$$

is intersection of half spare

$$
H_{i}=\left\{x \in \mathbb{R}^{n} / \quad e_{i}^{\top} x \geqslant 0\right\} .
$$

- The non-ngative or that is a cone

Cone
A set $S \subseteq \mathbb{R}^{n}$ is a cone if $x \in S \Longleftrightarrow \alpha x \in S \quad \forall \alpha \geqslant 0$

A convex cone is a cone that is convex:

$$
x, y \in S \Longleftrightarrow \underbrace{\theta_{1} x+\theta_{2} y}_{\text {conic combination. }} \in S, \forall \theta_{1}, \theta_{2} \geqslant 0
$$

Example: \mathbb{R}_{+}^{n} - nun-negatice orthont

$$
\begin{aligned}
& \mathbb{R}_{+} \\
& L_{+}^{n}-\left\{\left.\left[\begin{array}{l}
x \\
t
\end{array}\right] \right\rvert\,\|x\| \leq t, x \in \mathbb{R}^{n}, t \in \mathbb{R}_{+}\right\}
\end{aligned}
$$

