Convex Functions

- Examples of $2^{\text {nd }}$ ocher characterization.
- Operations preserving convexity
- Luelset and epigraph

Loot fire: $1^{\text {st }}$ and $2^{\text {nd }}$ adder and
$1^{\text {st }}$ order condition: $f: S \rightarrow \mathbb{R}$ (differentiable) with convex S

$$
\text { is convex 't } f(x)+\nabla f(x)^{\top}(y-x) \leqslant f(y), \quad \forall y, x \in S
$$

$2^{\text {nd }}$ orbs condition: For twice efferatiable $f: S \rightarrow R$ with convex S, f is convex if

$$
\nabla^{2} f(x) \geqslant 0 \quad \text { for all } x \in S \text {. }
$$

Example

1. $f(x)=x^{\alpha}$ for $x \geq 0$.

$$
f^{\prime \prime}(x)=\alpha(\alpha-1) x^{\alpha-2}
$$

$f^{\prime \prime}(x) \geqslant 0$ if $\alpha \leqslant 0, \alpha \geqslant 1$. \Rightarrow convo x

$f^{\prime \prime}(x) \leqslant 0$ if $\alpha \in[0,1] \Rightarrow$ concave
2. Quadratic-over-lie: $f(x, y)=x^{2} / y$ over $C=\{(x, y) \mid x \in \mathbb{R}$,

$$
\nabla^{2} f(x, y)=\frac{2}{y^{3}} z z^{\top} \succcurlyeq 0, \quad z=\left[\begin{array}{c}
y \\
-x
\end{array}\right]
$$

Least squares objective: $f(x)=\frac{1}{2}\|A x-b\|_{2}^{2}$

$$
\text { awacs } \quad \begin{aligned}
\nabla f(x) & =A^{\top}(A x-b) \\
\nabla^{2} f(x) & =A^{\top} A \geqslant 0
\end{aligned}
$$

convex.

Example contd
3 Entropy function: $f(x)=-\sum_{i=1}^{n} x_{i} \log \left(x_{i}\right)$ on $\operatorname{simp} 6 x$

$$
\begin{gathered}
\Delta_{n}:\left\{x \in \mathbb{R}^{n} \mid x_{i} \geq 0, \sum_{i=1}^{n} x_{i}=1\right\} \\
\frac{\partial f}{\partial x_{i}}(x)=-\lg \left(x_{i}\right)-1 \quad \Rightarrow \frac{\partial^{2} f}{\partial x_{2}^{2}}(x)=-\frac{1}{x_{i}}
\end{gathered}
$$

Heston is diagonal with $\left(\nabla^{2} f(x)\right)_{i i}=-\frac{1}{x_{i}}$
\Rightarrow Entropy function $n^{\prime \prime}$ concorde.
4. Log Sum Eaponatial: $f(x)=\log \left(\sum_{i=1}^{m} e^{a_{i} x}\right)^{0}, y_{i}=e^{x_{i}}$

$$
\nabla^{2} f(x)=\frac{1}{e^{\frac{1}{y}}} \operatorname{dong}(y)-\frac{1}{\left(e^{\frac{1}{y}}\right)^{2}} y y^{\top} \quad A=\left[0_{1}, \ldots a_{m}\right]
$$

verify $\nabla^{2} f(x) \geqslant 0$ for all x.

Operations that presere converity.
Voify convexity of function:
(1) Using dofintion: $f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)$
(2) $1^{\text {st }}$ ad $2^{\text {nd }}$ orcher and.
(3) Operations persaving conroxity.

- non-nega tive multiple
- sum
- composition with affico function
- composition with non-decreasing convex fuction
- pointcuse maximum of convex functions.
- minimization.

Non-ngative multiple; sum al office composition

- f convex over a convex set $S S \mathbb{R}^{n}, \alpha \geq 0$ $\Rightarrow \alpha f$ is convex on S.
- f_{1}, \ldots, f_{k} convex over a convex set $S S \mathbb{R}^{n}$,
$\Rightarrow f_{1}+\cdots+f_{k}$ is convex over C.
- f convex over a convex set $S \subseteq \mathbb{R}^{n}, A \in \mathbb{R}^{n \times m}, b \in \mathbb{R}^{n}$. $\Rightarrow g(y)=f\left(A_{y}+b\right)$ over $D=\left\{y \mid A_{y}+b \in S\right\}$.

Example

$$
f(x)=x^{2} / y
$$

quadratic-orer-liear: $h(y, t)=\|y\|^{2} / t$ is convex owes

$$
\begin{aligned}
& c=\left\{\left.\binom{y}{t} \in \mathbb{R}^{m+1}\right|_{m} y \in \mathbb{R}^{m}, t>0\right\} \\
& \underline{h(y, t)}=\frac{\|y\|^{2}}{t}=\sum_{i=1}^{m} y_{i}^{2} / t<\text { sum } f \text { convex } \\
& \text { function. }
\end{aligned}
$$

generdized quadratic over linear:
$A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, c=\mathbb{R}^{n} \backslash\{0\}, d \in \mathbb{R}$.
$g(x)=\|A x+b\|^{2} /\left(c^{\top} x+d\right)$ is convex over

$$
D=\left\{x \in \mathbb{R}^{n}\left\{c^{\top} x+d>0\right\}\right.
$$

because $g(x)=h\left(A x+b, c^{\top} x+d\right)$ is a linear chase of variable of $h \Rightarrow g$ is convex.

Composition with a nor decreasing convex function.

- $f: C \rightarrow \mathbb{R}$ is convex over convex set $C \subseteq \mathbb{R}^{n}$.
$g: I \rightarrow \mathbb{R}$ is a one dimensional non-decreasing convox fine.
Assume $f(c) \subseteq I .($ image of f is conteinal in $I)$.
$h(x)=g(f(x))$ is convex ores C.
Example: $h(x)=e^{\|x\|^{2}}$ is convex because.
$g(t)=e^{t}$ is non-decreasing convex function.
and $f(x)=\|x\|^{2}$ is convex .
Non-example: Is there a non-convex h where g if ore cover?

$$
\begin{aligned}
& g(x)=x^{2}, \quad f(x)=x^{2}-4 \\
& h(x)=\left(x^{2}-4\right)^{2} \text { is not convex }
\end{aligned}
$$

Poiatoise maximan of comox functions,

- f_{1}, \ldots, f_{k} ar corvex functions ores conver set $\subset \subseteq \mathbb{R}^{n}$?

$$
\Rightarrow f(x)=\max _{i \in[k]} f_{i}(x) \text { is convox }
$$

$[k]=\{1, \ldots, k\}$. over C.

$$
\begin{aligned}
& \text { K\}. Over } C \text {. } \\
& \max _{i}\left(O_{i}+b\right) \leq a_{i}+\max _{i} b_{i} \\
& \{x .
\end{aligned} x \in \mathbb{R}^{n} .
$$

Erample: $f(x)=\max \left\{x_{1}, \ldots, x_{n}\right\}, x \in \mathbb{R}^{n}$.
is conrex.
Exomple: $f(x)=x_{[1]}+\cdots+x_{[k]}$, whee $x_{[k]}$ is the $k^{\text {m }}$ largent component of x is correx bewabe $f(x)=\max \left\{x_{i_{1}}+\ldots+x_{i_{k}} \mid i_{k} \in\{1, \ldots, n\}\right.$ ar diffeat $\}$.

Minimization

- $f: C \times D \rightarrow \mathbb{R}$ convex defined over the set $C \times D$ where $C \subseteq \mathbb{R}^{m}, D \subseteq \mathbb{R}^{n}$ ans convex x. $g(x)=\min _{y \in D} f(x, y)$ is convex on C.

Example: $C \subseteq \mathbb{R}^{n}$ be acorvex set The distance function:

$$
d(x, C)=\operatorname{mix}_{y \in C}\|y-x\|
$$

is convex over \mathbb{R}^{n}.

Laced set

- $f: S \rightarrow \mathbb{R}$ defined over a set $S \subseteq \mathbb{R}^{n}$. a-lendset of f is: $S_{\alpha}=\{x \in S / f(x) \leq \alpha\}$.
- $f: S \rightarrow \mathbb{R}$ convex defined over a
 convex set $s \leq \mathbb{R}^{n}$. Than every level aet of ${ }^{s_{A}}$ f is a convex set
- $f: s \rightarrow \mathbb{R}$ is quasi convex if for all $\alpha \in \mathbb{R}, S_{a}$ is convex.

$$
\begin{aligned}
& S_{\alpha}=\left\{x \in \mathbb{R}^{2} \mid f(x) \leq \alpha\right\} \\
& x, y \in S_{\alpha}
\end{aligned}
$$

show $\lambda x+(1-\lambda) y \in S_{\alpha}$
show

$$
\begin{array}{ll}
f(\lambda x+(1-\lambda) y) \leq \alpha . & f(x) \leq \alpha \\
& f(y) \leq \alpha
\end{array}
$$

