12. Linear Programming Applications

- Diet problem
- History
- Network flow
- Branch and bound

Next up: LP geometry, solvers, duality

A linear program

Given $A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^{m}, c \in \mathbf{R}^{n}$, solve

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & c^{T} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{array}
$$

- Other variations exist, but all equivalent after reformulations
- Historical importance
- Good solvers (simplex method, interior point methods)
- Generalized to "linear cone" solvers
- $x \geq 0$ is replaced by x in second-order cone or semidefinite cone
- Now we can solve lots of convex problems

Diet problem

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & c^{T} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{array}
$$

- I want to lose as much weight as possible
- x_{i} represents how many servings of food group i to eat
- c_{i} gives \# calories of 1 serving of food from group i
- $a_{i}^{T} x=b_{i}$ encodes nutritional recommendations
- $x \geq 0$ since I can't eat negative food

History

Important fields

- Operations research
- Started with post-WWII military research
- Now expands to management sciences
- Often appears as linear relaxations of important combinatorial problems
- e.g. assigning people to tasks, routing supplies, strategic planning,...
- Economics
- 1939: Planning a country's economy (Kantorivich in USSR, Koopmans in US)
- Planning in business (maximize utility subj. to. resource constraints)
- Combinatorial optimization
- Linear relaxation gives lower bounds
- Often used in branch-and-bound solvers

Assignment

Task: assign n people to n tasks

$$
\begin{aligned}
-\underset{X \in \mathbf{R}^{n \times n}}{\operatorname{maximize}} & \sum_{i j} X_{i j} W_{i j} \\
\text { subject to } & X^{T} e=e, \quad X e=e \\
& X_{i, j} \in\{0,1\}
\end{aligned}
$$

- $X_{i j}=1 \Longleftrightarrow$ person i assigned to task j
- $W_{i j}$ encodes preference of this assignment
- Linear equality constraint ensures only 1 assignment per person and per task
- Combinatorial constraint $X_{i, j} \in\{0,1\}$ makes problem hard to solve
- Linear relaxation: replace

$$
X_{i, j} \in\{0,1\} \rightarrow 0 \leq X_{i, j} \leq 1
$$

Routing (aka Traveling Salesman problem)

Task: Assign a supply route for a truck, with n stops

$$
\begin{array}{cl}
\underset{X \in \mathbf{R}^{n \times n}}{\operatorname{minimize}} & \sum_{i j} X_{i j} W_{i j} \\
\text { subject to to } & X^{T} e=e, \quad X e=e \\
& \sum_{j} X_{1, j}=\sum_{i} X_{i, 1}=1 \\
& \sum_{i \notin S} \sum_{j \in S} X_{i j} \geq 1, \forall S \subseteq\{1, \ldots, n\} \\
& X_{i, j} \in\{0,1\}
\end{array}
$$

- $X_{i j}=1$ if visit i right after j
- Second linear constraint: ensure truck leaves and returns at depo
- Third constraint: ensures route is connected
- Linear relaxation: replace

$$
X_{i, j} \in\{0,1\} \rightarrow 0 \leq X_{i, j} \leq 1
$$

Economics

- A gadget is built from two widgets and three fidgets
- Inventory only has 300 widgets
- The fidgets and widgets are stored in boxes, with 3 fidgets and 1 wigdet per box. We need to clear out at least 50 boxes
- How can I maximize the number of gadgets built?
- Problem formulation

$$
\begin{array}{cl}
\underset{x, y}{\operatorname{maximize}} & 2 x+3 y \\
\text { subject to } & x<300 \\
& x+3 y>50 \\
& x \geq 0, y \geq 0 \\
& x, y \quad \text { are integers }
\end{array}
$$

- Linear relaxation: omit last constraint

Network flow

\(4\left[\begin{array}{ccccccc}3 \& 5 \& 0 \& 0 \& 0 \& 0 \& 0

-3 \& 0 \& 1 \& 2 \& 0 \& 0 \& 0

0 \& -5 \& -1 \& 0 \& 2 \& 0 \& 4

0 \& 0 \& 0 \& -2 \& -2 \& 4 \& 0

0 \& 0 \& 0 \& 0 \& 0 \& -4 \& -4\end{array}\right]\)| node |
| :---: |
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |

node-arc matrix

Appears in transportation, network routing, planning

- n nodes, m arcs (directed edges)
- $X \in \mathbf{R}^{n \times m}$ is node-arc matrix
- $C_{L} \leq X \leq C_{U}$ capacity constraints (width of pipe)
- If no edge between nodes $i, j,\left(C_{L}\right) i j=\left(C_{U}\right)_{i j}=0$
- Conservation of flow:

$$
\sum_{j} X_{i j}=0 \text { for all non-source non-sink nodes } i
$$

$\downarrow\left[\begin{array}{ccccccc}3 & 5 & 0 & 0 & 0 & 0 & 0 \\ -3 & 0 & 1 & 2 & 0 & 0 & 0 \\ 0 & -5 & -1 & 0 & 2 & 0 & 4 \\ 0 & 0 & 0 & -2 & -2 & 4 & 0 \\ 0 & 0 & 0 & 0 & 0 & -4 & -4\end{array}\right] \begin{gathered}\text { node } \\ 1 \\ 2 \\ 3 \\ 4 \\ 5\end{gathered}$
node-arc matrix

$$
\begin{array}{cl}
\underset{X}{\operatorname{maximize}} & \sum_{i=1}^{n} X_{1, i} \\
\text { subject to } & C_{L} \leq X \leq C_{U} \\
& \sum_{j} X_{i j}=0, \forall i \neq 1
\end{array}
$$

Total flow
Capacity constraints
Conservation of flow

Branch and bound

Branch and bound

Consider the mixed integer linear program

$$
\begin{array}{cl}
\underset{x \in \mathbf{R}^{n}}{\operatorname{minimize}} & c^{T} x \\
\text { subject to } & A x=b, C x \leq d \\
& x_{i} \in\{0,1\}, i=1, \ldots, n
\end{array}
$$

- Generalizes assignment, routing, graph coloring, ...
- Define $p(x)=c^{T} x$.
- $x \in \mathbf{R}^{n}$ is feasible if

$$
A x=b, \quad C x \leq d, \quad x_{i} \in\{0,1\}, i=1, \ldots, n
$$

Branch and bound

Consider the mixed integer linear program

$$
\begin{array}{ll}
\underset{x \in \mathbf{R}^{n}}{\operatorname{minimize}} & c^{T} x \\
\text { subject to } & A x=b, C x \leq d \\
& x_{i} \in\{0,1\}, i=1, \ldots, n
\end{array}
$$

- Upper bound: For any feasible $x, p(x) \geq p\left(x^{*}\right)$
- Lower bound: Consider \hat{x} the solution to relaxed problem

$$
\begin{array}{ll}
\underset{x \in \mathbf{R}^{n}}{\operatorname{minimize}} & c^{T} x \\
\text { subject to } & A x=b, C x \leq d \\
& 0 \leq x \leq e
\end{array}
$$

Then $p(\hat{x}) \leq p\left(x^{*}\right)$

Branch and bound algorithm

(1) Binary tree traverses every possible value of x

Branch and bound algorithm

(1) Binary tree traverses every possible value of x
(2) Breadth-first search: calculate an upper and lower bound given a fixed value

Branch and bound algorithm

(1) Binary tree traverses every possible value of x
(2) Breadth-first search: calculate an upper and lower bound given a fixed value
(3) If lower bound $>$ upper bound of another node, impossible choice

- cut node and all descendants

Branch and bound algorithm

(1) Binary tree traverses every possible value of x
(2) Breadth-first search: calculate an upper and lower bound given a fixed value
(3) If lower bound $>$ upper bound of another node, impossible choice

- cut node and all descendants
(4) Continue searching

How to create a good B-B solver

- Better upper bounds (how to guess well?)
- Better lower bounds (Can we do something tighter than LP relaxation?)
- Better ordering of trees

B-B solvers require fast LP solvers, since they may be applied many times!

