Reall:
Vartex: $x^{*} \in P$ is vertex if $\exists c \in \mathbb{R}^{n}$ s.t. $c^{\top} x^{+}<c^{\top} y$ fr all $y \in P, b \pm x$

Extreme point: $x^{*} \in P$ is extreme poit if $\nexists y, z \in P$ and $\lambda \in(0,1)$ s.t. $x^{*}=\lambda y+(1-\lambda) z$

BFS: x^{*} is BFS if

$$
\text { - } x^{*} \in P
$$

- $B=\left\{i \mid a_{i}^{\top} x^{*}=b_{i}\right\}$ with $|B| \geq n$

Extreme port, rater, BFS.

- Fr a polyhedron P and $x^{*} \in P$, TFAE:
a) x^{*} is a vertex
b) x^{*} is a extreme pout
$(c \Rightarrow a)$ construct a
c) x^{*} is a BFS
$c \in \mathbb{R}^{n}$ st.
$c^{\top} x<c^{\prime} y$ for all $y \in P$
$c \Rightarrow a$: . Let x^{*} be a BFS and B be the basic od t for x^{*}
- Let $c=-\sum_{i \in B} a_{i} \cdot$ Then

$$
\begin{aligned}
& c^{\top} x^{*}=-\sum_{i \in B}^{i \in B} o_{i}^{\top} x^{*}=-\sum_{i \in B} b_{i} \text { and } \\
& c^{\top} x=-\sum_{i \in B} o_{i}^{\top} x \geq-\sum_{i \in B} b_{i} \text { fo ans } x \in P \\
& \Rightarrow x^{*}=\text { arg min } c^{\top} x \quad \text { subject to } x \in P
\end{aligned}
$$

- A1so, $-\sum_{i \in B} o_{i}^{\top} x \geq-\sum_{i \in B} h_{i}$ nold with eged ity if adonly if $o_{i}^{r} x=b_{2}$ for all $i \in B$
- x^{*} is unigue solution of $a_{i}^{\top} x=b_{i}, i \in B$.
- So, $c^{\top} x^{*}<c^{\top} y$ frall $y \in P$.
$L P$ solutions are on extreme points. $\min _{x \in \mathbb{R}^{n}} c^{\top} x$ set. $A x \leq b-\angle P$
- Define p^{*} the optimal value of $\angle P$
- Climin: There exists a extrempicit $x^{*} \rho P$ where

$$
c^{\top} x^{*}=p^{*}\left(\text { as long as } p^{*}>-\infty\right)
$$

Proof:. Suppose $c^{\top} \hat{x}=p^{*}$, but \hat{x} is not on extreme port
-Then $B=\left\{i \mid o_{i}^{\top} \hat{x}=b_{i}\right\}$ satisfies $\mid B /<n$

- Than A_{B} hes a non-trivid nullspace, Pick $v \in N\left(A_{B}\right)$
- Ether $c^{\top} v=0$ or $c^{\top} v \neq 0$

Proof: LPsolutions ar an extreme points contd.
Case 1: suppose $c^{\top} v<0$.
.pick $\tilde{x}=\hat{x}+\alpha v, \alpha>0$

$$
\begin{aligned}
\Rightarrow c^{\top} \tilde{x} & =c^{\top} \hat{x}+a c^{\top} v \\
& =p^{*}+d(-)<p^{*}
\end{aligned}
$$

- $A_{B} \tilde{x}=A_{B} \hat{x}$
- $\left.A_{N} \hat{x}<b_{N}(N=\{1, \ldots, m\}) B\right)$
- Pick a small enough that $A_{N} \tilde{x}=A_{N} \hat{x}+\alpha A_{N} v \leq b_{N}$

Prof: LPsolutions ar on extreme points contd. Case 2: Suppose $e^{\top} v>0$.

- Pick $\tilde{x}=\hat{x}-\alpha v$
- Then $c^{\top} \tilde{x}=c^{\top} \hat{x}-\alpha c^{\top} v<c^{\top} \hat{x}$
- $A_{B} \tilde{x}=A_{B} \hat{x}$

- Pick a small erose that $A_{N} \tilde{x}<b_{N}$
case 3: Suppose $c^{\top} v=0$
- Pick $\tilde{x}=\hat{x}+\alpha v$
- Then $c^{\top} \tilde{x}=c^{\top} \hat{x}$ ad $A_{B} \tilde{x}=A_{R} \hat{x} \downarrow$

- Pick a small mog that $A_{V} \tilde{x}<b_{N}$

$$
A_{N} \tilde{x}=A_{N} \hat{x}+\alpha A_{N} v \quad b_{N}+\alpha c_{N}<
$$

LPsolutions ar on extreme points $\min _{x \in \mathbb{R}^{n}} c^{\top} x$ st. $A x \leq b-\angle P$

- The optimal $\cos t$ is $-\infty$ or there exist on optimal solution
- Compare to non-linear function $\gamma_{x}, x \geq 1$
- optional cot is not -0, but solution dosnot exist.

Standard Fin Polyhedra
Generic polyhedron:

$$
P=\left\{x \left\lvert\, \begin{array}{l}
A x=b \\
C x \leq d
\end{array}\right.\right\} \begin{aligned}
& A \in \mathbb{R}^{m \times n} \\
& C \in \mathbb{R}^{k \times x}
\end{aligned}
$$

standard form polyhedron

$$
P=\left\{x / \begin{array}{c}
A x=b \\
x \geq 0
\end{array}\right\}, \quad b \geq 0
$$

Converting to standard form: positive b

- Elements of both b and d (in gencic form) w. le be b in $s t o n d a r d$ form.
For $b_{i}<0$, replace

For $d_{i}<0$, replace

$$
\begin{aligned}
& \text { replace } \\
& c_{i}^{\top} x \leq d_{i}
\end{aligned} \rightarrow\left(-c_{i}\right)^{\top} x \geq\left(-d_{i}\right)
$$

Converting to standard form: free variable

- x_{i} is called a free variable if it has no constrait $A x=b, \quad c x \leq d, \quad x$; may not be construed
- There are no fie variables in standard form - every variable must be non-negatine.

Converting free variable

- every fire variable x_{i} is replaced with two new variables x_{i}^{\prime} and $x_{i}^{\prime \prime}$ with

$$
x_{i}=x_{i}^{\prime}-x_{i}^{\prime \prime}, \quad x_{i}^{\prime} \geq 0, \quad x_{i}^{\prime \prime} \geq 0
$$

- x_{i}^{\prime} encodes positive pat of x_{i}
- x_{i} " encodes negative part of x_{i}

Converting to standard form: shock and surplus.
For every inequality constraint of the form

$$
c_{i}^{\top} x \leq d_{i} \quad\left(c_{i}^{\top} x \geq d_{i}\right)
$$

introduce a new slack (or surplus) variable S_{i}, replacing the inezedity with two constraint

$$
\begin{gathered}
c_{i}^{\top} x+s_{i}=d_{i} \\
s_{i} \geq 0
\end{gathered} \quad\binom{c_{i}^{\top} x-s_{i}=d_{i}}{s_{i} \geq 0}
$$

