Standard form

· Stendard form · converting to standard form · degeneracy in standard for

Stondard Fim Polyhedra

Generic polyhedrom: $P = \begin{cases} x \mid Ax = b \\ Cx \leq d \end{cases} \quad A \in \mathbb{R}^{m \times n} \\ C \in \mathbb{R}^{k \times n} \end{cases}$

standard form polyhedron $P = \begin{cases} z \mid Az = b \\ z \ge 0 \end{cases}, b \ge 0$

Converting to standard form : positive b · Elements of both b and d (in generic form) will be b in standard form. For $b_i < 0$, replace $a_i^T x = b_i \longrightarrow (-a_i^T)^T x = (-b_i)$ D, replace $c_i^T x \in d_i \rightarrow (-c_i)^T x \geq (-d_i)$ $c_i^T x \geq d_i \rightarrow (-c_i)^T x \leq (-d_i)$ $c_i^T x \geq d_i \rightarrow (-c_i)^T x \leq (-d_i)$ For d; <0, replace 20

Converting to stondard form : slock and surplus.

For every inequality constraint of the form $c_i^T x \in d_i$ $(c_i^T x \geq d_i)$

introdure a new slock (or surplus) variable Si, replacing the inequality with two constraints: $c_i^T x + s_i = d_i$ $s_i \ge 0$ $(c_i^T x - s_i = d_i)$ $s_i \ge 0$

Bosic solution in stondard form It is a basic solution if the verters $a_{i_1}, a_{i_n}, i_j \in \mathcal{B}$ are linearly independent In standard form, there are • η variables $(x_1, ..., x_n)$ · n+m total constrants m equality constraint (Ax=b)
n inequality constraint (X≥0) for any basic solution I, · B mut contain a dennts Thus nom of the inequality constraint

Basic solution in standard form Choose n.m inequality constraint to be active is the same as choosing n-m variables x, to be zero. Making x; zoo eleminatio it col of A.

Now, $\overline{A} \approx = \begin{bmatrix} B & N \\ I \end{bmatrix} \begin{bmatrix} X_B \\ \times_N \end{bmatrix} = \begin{bmatrix} b \\ b \end{bmatrix}$ $X_N = 0, B \times_B = b$

Full ronk ossumption
Polyhedson in standard form

$$P = f \propto (A \propto = b, \ \propto \geq 0 \ G, \ A \in \mathbb{R}^{m \times n}$$

· Assume ronk(A) = k < m and rows $f a_{i_1}^T, \ldots, a_{i_k}^T \} of$
A are linearly independent
· Let $B = f \propto (a_{i_1}^T \propto = b_{i_1}, i_1 = 1, \ldots, k, \ x \geq 0)$
· Then $P = B$. That is we can assume rows of A
are linearly independent without loss of general $\frac{1}{2}$

Degeneracy: inequality form polyhedron in inequality form: $\begin{array}{rcl} Ax \leq b \\ a & basic feesible solution x^{*} with \\ \sigma_{i}^{T}x^{*} = b_{i}, & i \in B \\ a & a & \sigma_{i}^{T}x^{*}cb_{i}, & i \notin B \end{array}$ is degenerate if # of indicing in Bis grates than n. · property of description of polyhedron · affants performance of some algorithm • disappears for small particulations (F b.

Degenerary : standard form polyhedron in standard form: a basic solution partitions the variables into two sels: with $X_N = 0$ [B, N] = b $Bz_{B} = b$ i'e. a basic feasible solution in stadard form is degeneration if more that non components in 2 are zero, i.e. $x = \begin{bmatrix} x_B \\ x_N \end{bmatrix} = \begin{bmatrix} B \\ 0 \end{bmatrix} = \begin{bmatrix} b \\ componente. \end{bmatrix}$

tristance of extreme point · A poly holoon contains a line if there exists zEP, dERⁿ such that x+adEP for all aER. AER^{man} Let P={x1Azsb} be a non-empty polyhedron
THE
The polyhedron has at least one
Extreme point
D The polyhedron doesnot contain a line
E) The polyhedron doesnot contain a line O There exists a rows of A liverly independent · Every bounded, non-anpty polyhedren hos an extreme point · Polyholom is student form always has an extreme point.