Interior point method

Mistory of interior methad
The simplex methed:

- invented by Geonge Dontzig in 1947
- "oalks" He edge of the polykedral feasib6 set
- vorst-case complexity is exponatial (mayned to visit every) vertex
- experionce (ad sove onolysis) suggot avegge polynorial conphuty

Interior point methods (IDM) are a radid deporture from the simplen methad:

- IPMs travesses the interior of the polyhdral set
- (improatical) polynomial algorithm for LP first propused by Kachin (1979)
- Kurmackar (1984) offered first "practial" pdynowal $\angle P$

Big ida

- Constraint are had to deal with
- Lets twin than into penalties
- We know how to deal with smooth un constrained problem

Penalty function
$\operatorname{minimize}_{x} f(x)$ subjat to $h_{i}(x) \geq 0 \quad i=1, \ldots, m$

$$
\dot{A} x=6
$$

- $f, h_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are convex ad twice differentiable
- $A \in \mathbb{R}^{m \times n}$ with $\operatorname{rank}(A)<n$.

Reformulate as

$$
\min _{x} f(x)+\sum_{i=1}^{m} \phi_{t}\left(h_{i}(x)\right) \text { s.l. } A x=b
$$

Conditions

- $\phi_{t}(s) \rightarrow \infty$ as $s \rightarrow 0 \rightarrow$ avoid boundary
- $\phi_{t}(s) \rightarrow \infty$ for all $s \geq 0$ as $t \rightarrow \infty$? ?

Indicator Function
First pass example:

$$
I_{S}(x)=\left\{\begin{array}{ccc}
0 & \text { if } & x \in S \\
\infty & \text { if } & x \notin S
\end{array}\right.
$$

Then, we con reformulate

$$
\min _{x} f(x) \quad \text { as } \min _{x} f(x)+I_{s}(x)
$$

Howera, this problem is not ear to solve. The objection is not (ingeneral) defountable.

Eliminating nonnegative constraints
Apply to the primal problem in standred form:

$$
\min _{x} c^{r} x \text { subjat to } A x=6, x \geq 0
$$

The core difficulty in $\angle P$ is the pressence of $x \geq 0$.
Eliminate non-negative constraint via bossier function:

$$
B_{t}(x)=c^{T} x-t \sum_{j} \log \left(x_{j}\right)
$$

$\cdots-\log \left(x_{j}\right) \rightarrow \infty$ as $x_{j} \rightarrow 0^{+}$(define as $\infty f_{1} x_{j} \leq 0$)

- -t $\sum_{j} \log \left(x_{j}\right) \rightarrow \infty$ as $x_{j} \rightarrow 0^{+}$

Borries function
$\left(P_{t}\right) \quad \operatorname{minizi}_{x} B_{t}(x)$ s.t. $A x=b$

- minixize of the borriar problem chperds on t :
x_{t} solves P_{t}.
- minizizer of P_{t} is unique for each t becasse of convexity of B_{t}

Example
minimize x subject to $x \geq 0$ x

$$
\begin{aligned}
& B_{t}(x)=x-t \log (x) \\
& \frac{d B_{t}(x)}{d_{x}}=1-\frac{t}{x}=0 \Rightarrow x_{t}=t \\
& \Rightarrow \lim _{t \rightarrow 0^{+}} x_{t}=0
\end{aligned}
$$

Example
$\operatorname{minimize}_{x_{1}, x_{2}, x_{3}} x_{2}$ subjet to $x_{1}+x_{2}+x_{3}=1, x \geq 0$

$$
\begin{aligned}
& B_{t}(x)=x_{2}-t \log \left(x_{1}\right)-t \log \left(x_{2}\right)-t \log \left(x_{3}\right) \\
& \sqrt{x_{n} n} x_{2}-t \log \left(x_{1}\right)-t \operatorname{tg}\left(x_{2}\right)-t \log \left(1-x_{1}-x_{2}\right)=B_{t}^{2} \\
& x_{1} x_{2} \\
& x_{1}(t)=\frac{1-x_{2}(t)}{2} \rightarrow \frac{1}{2} \\
& x_{2}(t)=\frac{1-2 t-\sqrt{1+g t^{2}+2 t}}{2} \rightarrow 0 \\
& x_{1}(t)=\frac{1-x_{2}(t)}{2} \rightarrow \frac{1}{2} \quad X^{\prime \prime}=\left\{\left(x_{1}, 0, x_{2}\right) \left\lvert\, \begin{array}{l}
x_{1}+x_{3}=1 \\
x \geq 0
\end{array}\right.\right\}
\end{aligned}
$$

This problbm has infonteley mayy solution:

Example
$\min _{x} c^{\prime} x$ subjeat to $A x \leq b$
Reformulat as

$$
\min _{x} c^{\top} x-\underbrace{t \sum_{i=1}^{m} \log \left(b_{i}-\omega_{i}^{\top} x\right)}_{:=\phi_{t}(x)}
$$

Gradial $\quad \nabla \phi_{t}(x)=t \cdot A^{\top} z, \quad z=\frac{1}{b_{i}-a_{i}^{\top} x}$
Hession $\nabla^{2} \phi_{t}(x)=t A^{\top} \operatorname{dag}(z)^{2} A$

- pick some t to start
- Solve appraximately $\min _{x} c^{\top} x+\phi_{t}(x)$
- decrese t

Primal boris method
solve a sequence of linearly constrained nonlinear functions:
chase $x_{0}>0, t_{0}>0(\approx 1), \tau<1$
repeat
x_{k+1} argmin $B_{t}(x)$ subject to $A x=b$

$$
t_{k+1} \leftarrow \tau t_{k}
$$

until t_{k} is "small"
under $m i l d$ cad ions $x_{k} \rightarrow x^{*}$.

