Price elasticity of demand
Common economic difinton:
The perculage change in quantity demanded duce by the percatage change in price, ie.

$$
\varepsilon=\frac{\% \Delta q}{\% \Delta p}=\frac{p}{q} \frac{\Delta q}{\Delta p}\left(\% \Delta q=\frac{\Delta q}{q} \times 100\right)
$$

Formal definition: $\varepsilon=\frac{p}{q} \frac{d q}{d p}$ what is the sign of ε ?

The lau of demend says that p^{1}, q \downarrow i.e.

$$
\frac{d g}{d p}<0
$$

So, the price deotioty of demad is ugatio, $\varepsilon<0^{9}$. Why do we cave about price elatitity of derad? Q. Koo will racme change as we adjust price?

$$
\text { Revenie }=p \cdot q, \quad R=p \cdot q(p)
$$

If price incoeses, quatits demanded ckcreas. But it uncker if reknue will increane/decrease.

Change, Reremie
The increase/decrease of renews depends on the relative change in p and of
e) If $P_{\text {now }}=1.2 P \quad(20 \%$ increase $)$

$$
\begin{aligned}
& P_{\text {now }}=1.2 p \\
& q_{\text {new }}=0.99 \mathrm{q} \quad(1 \% \text { decrease }) \\
& =1.2 p \times 0.99 \mathrm{q}
\end{aligned}
$$

Ten, $R_{\text {new }}=P_{\text {now }} \quad q_{\text {saw }}=1.2 p \times 0.9 q_{q}=\underbrace{(1.2 \times 0.99)}_{>1} \underbrace{p q}_{R}$ So, rance increan

If $P_{\text {now }}=1.2 p, q_{\text {new }}=0.5 q$ then

$$
R_{\text {nw }}=\underbrace{(1.2 \times 0.5)}_{<1} \underbrace{p .8}_{R}
$$

So, revenue decreases.

Rerenue ond price denticity
What is the relationship between price elasticts of demond and revence?

$$
\begin{aligned}
R & =p \cdot q(p) \quad(\text { trat } q=q(p)) \\
\frac{d R}{d p} & =1 q(p)+p \cdot \frac{d q}{d p}(\text { product rule }) \\
& =q\left(1+\frac{p}{q} \frac{d p}{d q}\right) \\
& =q(1+\varepsilon) \quad(\text { defin tion } f \varepsilon) .
\end{aligned}
$$

Note that o is alvargs positive. So, the sign of $\frac{d R}{d p}$ is detcumined by $1+\varepsilon, i$ e, hou large in absolet value ε is sulative to 1 .

Three cases of $(1+\varepsilon)$
Cove 1, $\mid \varepsilon \|>1$: We say the good is price drastic $\left\lvert\, \varepsilon=\frac{\% \Delta \Delta}{\% \Delta P}\right.$ Here, $1 \% \Delta q|>|\% \Delta p|$. So, a 1% increase in price leads to a grater than 1% decrease in quattydenad. Mongemat should decrease price to increase revenue

$$
\frac{d R}{d p}=q(1+\varepsilon)
$$

Case 2, $|\varepsilon|<1$: We say the good is price inelastic. Here, $|\% \Delta \mathrm{fl}<1 \% \Delta p|$. So, a 1% incurve in price leads to a los than 1% decrease in quantity demaded.

Increase price to increase revenue

Case $3,|\varepsilon|=1$ we say the good is price unit elastic. Hove, $|\% \Delta q|=|\% \Delta p|$ So, a 1% change in price causes a 1% decrease in quant it.
This is the optimal price to maximize revere $(R$ is maximized when $\frac{d R}{d p}=q(1+\varepsilon)=0$)

For a linear demand:

$$
f(p)=-a p+b, \quad a, b>0
$$

$$
R=p \cdot q
$$

$$
=p(-a \rho+b)
$$ quadratic function.

Example
Suppouse the demad curve of OPads is gina by $q=500-10 \mathrm{p}$. (©) Compite ε (pria elostity of demad).

$$
\varepsilon=\frac{p}{q} \frac{d q}{d p}=\frac{p}{q} \times(-10)=\frac{-10 p}{500-10 p}=\frac{p}{p-50}
$$

(b) what is the price elasticity of demand when $p=\$ 30$.

$$
\text { Fron }(a)=\varepsilon(30)=\frac{30}{30-50}=-\frac{3}{2}=-1.5
$$

Since $1 \varepsilon />1$, the good is price alastic and OPad shaubl decrase pria to incrase ranme.

Example contd.
c) What is the percentage change in dromond it the $p=\$ 30$ and increase by 4.5%.

$$
\varepsilon=\frac{p}{q} \frac{d q}{d p} \approx \frac{\% \Delta q}{\% \Delta p}
$$

Hence $\frac{\% \Delta q}{\% \Delta p}=-1.5 \Rightarrow \% \Delta q=-1.5 \times 4.5 \%=-6.75 \%$ so, de mod is decreased by 6.75%.
(d) How dies the change in demand inform about the change in price?
decrease price to increase revenue because

$$
|675-6|>14 \cdot 50 \% 1
$$

Another example to comptes.
$f^{\prime}(x)$ is the rote of change of f ort x.
$\frac{f^{\prime}(x)}{f(x)}$ is the relative rate of change of f
Note $\frac{f^{\prime}(x)}{f(x)}=\frac{d}{d x} \ln (f(x))$ by chain rule

$$
\begin{aligned}
\varepsilon & =\frac{f(x)}{\text { relative rate of change of } q \text { wort. } p} \\
& =\frac{\frac{d}{d p} \ln (q(p))}{\frac{d}{d p} \ln (p)}=\frac{\frac{1}{q(p)} \cdot q^{\prime}(p)}{\frac{1}{p}}=\frac{p}{q} \cdot \frac{d q}{d p} \equiv \varepsilon .
\end{aligned}
$$

Continuous compound interest.
Ex Suppose you have $\$ 100$ in a bonk with an annual interest rat of 100%. Hoo much many wily you hove in the back after 1 year it the inters is co mporded.
(Q) Once a year:

Son $\quad \$ 100(1+1)=\$ 200$
(5) Semionnall:

Son $\$ 100\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2}\right)=\$ 100\left(1+\frac{1}{2}\right)^{2} \approx \$ 225$
(c) Every day of year:

Sain: $\$ 100\left(1+\frac{1}{365}\right)^{365} \approx \$ 271.46$

Compound interest
d) Compound n times in a year: $\$ 100\left(1+\frac{1}{n}\right)^{n}$

If we take $n \rightarrow \infty: \lim _{n \rightarrow \infty} 100\left(1+\frac{1}{n}\right)^{n}$

$$
=100 \underbrace{\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}}_{n \rightarrow \infty}=\underbrace{10 \cdot e^{1 \cdot 1}}
$$

This twins oft to equal e ≈ 2.718

$$
\approx \$ 2718
$$

Euler's rumba
In this case we say the interest was compounded continuously.

Compound interest
In general, the compound interest formula is:

$$
\begin{aligned}
& \text { He compound inters formula is: } \\
& A=P\left(1+\frac{r}{n}\right)^{r t} \lim _{n \rightarrow \infty}\left(1+\frac{r}{n}\right)^{r t}=e^{r t} \\
&
\end{aligned}
$$

$P=$ Principal (intial investment)
$r=$ annual rath of interest.
$n=\#$ of compounding periods per year
$t=\#$ of years.
$A=$ future value at the and of t years.
As we take $n \rightarrow \infty, A=P e^{r t}$
This is called continuously compounding interest.

Example
Find the present value of $\$ 5000$ to be reciered in 2 years if the money con be inverted at 12 F annual interest rat compounded continuoung.
Sol 1^{n} Gran $A=5000, r=0.12, t=2$
Find P

$$
\begin{aligned}
A=P e^{r t} \Longleftrightarrow P & =A e^{-r t} \\
& =5000 e^{-0.12 \times 2} \\
& \approx 3933 \cdot 14
\end{aligned}
$$

Population growth
Population growth con be modeled as:

$$
P(t)=P_{0} e^{r t}
$$

$P(t)$ is population after time t
P_{0} is initial population.
r is the rath of population growth.
t is time
Es. In 4927, the population of the could oas ~ 2 billon. In 1974, the population $000 \sim 4$ billion.
Estimat the tine shan the population reach billon.

Example sell
Let $P(t)$ be population in t yes:
Then $P(0)=P_{0}=2\left(b, l_{\text {on }}\right)$.
Hence $P(t)=2 e^{r t}$
Find r : when $t=1974-1927=47$ years.

$$
\begin{aligned}
& p(47)=2 e^{r 47}=4 \\
& \Rightarrow e^{47 r}=2 \Rightarrow r=\frac{\ln (2)}{47}
\end{aligned}
$$

Predict ola $P(t)=6$

$$
\begin{aligned}
& 6=2 e^{\frac{\ln (2)}{47} \cdot t} \\
& \Rightarrow 3=e^{\ln (2) / 47 t} \Rightarrow t=47 \cdot \frac{\ln (3)}{\ln (2)} \approx 74 \mathrm{yean} .
\end{aligned}
$$

So, Model predicts population is 6 billion in 2001 . 1999

Exponential model
In general, exporentid modal is of the form:

$$
\begin{aligned}
& y(t)=C e^{k t}+D, C_{D}, k \text { are constants. } \\
& y^{\prime}(t)=k C e^{k t} \quad(\text { chain rule) } \\
& y^{\prime}(t)=k y(t) .
\end{aligned}
$$

