Example

$$
\begin{aligned}
\text { Example } f(x) & =\frac{x-1}{x^{2}+3 x-4} \quad \text { limit } f f(x) \text { as } x \text { approaches } 1 . \\
& =\frac{x-1}{(x-1)(x+4)}=\frac{1}{x+4} \\
& \rightarrow \frac{1}{5} \text { as } x \rightarrow 1 \\
f(x) & \rightarrow \frac{1}{5} \text { as } x \rightarrow 1 \equiv \lim _{x \rightarrow 1} f(x)=\frac{1}{5}
\end{aligned}
$$

Example
Invotigch $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)$

The function does not approach a single value as $x \rightarrow 0$. So, the $l_{m} t$ does not exist

$$
\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)=D N E
$$

Example
Let $f(x)=\left\{\begin{aligned} 1, & x>0 \\ -1, & x<0\end{aligned}\right.$

2) What is the $\lim _{x \rightarrow 0} f(x)$? $\lim _{x \rightarrow 0} f(x)=D N E$

- As x approaches 0 from left of 0 , ie $x<0$, $f(x)$ gets closes to -1
- As x approcichs 0 from right of 0 , ie $x>0$, $f(x)$ gets closer to +1

One sided limits
In the previous example, the one sided limit exists:

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} f(x)=1 \\
& 0
\end{aligned}
$$

These are called the left ad right limits.
\rightarrow two sided lint
Theorem $\prod_{x \rightarrow a} f(x)=L \quad$ if ad any it

$$
\lim _{x \rightarrow a^{-}} f(x)=L \quad \text { and } \lim _{x \rightarrow a^{+}} f(x)=L
$$

Example

a) $\lim _{x \rightarrow 4^{-}} f(x)=0$
b) $\lim _{x \rightarrow 4^{+}} f(x)=3$
C) $\lim _{x \rightarrow 4} f(x)=$? (Two-sidd lint?)

Since the left and right handed limiter not equal, the limit DNE
$\frac{\text { Arithmetic of Lions }}{T_{m} 1.4 .2 \text { in textbook }} \quad \lim _{x \rightarrow a} c=c$
Eg. Suppose that $\lim _{x \rightarrow-1} f(x)=2$ ad $\lim _{x \rightarrow-1} g(x)=3$.
compeL:
$\rightarrow \lim _{x \rightarrow-1}(f(x)+g(x))=2+3=5$
b) $\lim _{x \rightarrow-1}(f(x) g(x)=6$
c) $\lim _{x \rightarrow-1}(f(x) \cdot c)=2 \cdot c$
set of red number
d) $\lim _{x \rightarrow-1} f(x) / g(x)=2 / 3$
e) $\lim _{x \rightarrow-1}(f(x)-2) /(g(x)-3)=? ? f(x)=\frac{x-2}{(x-2)(x-1)}$
f)

$$
\begin{aligned}
& \lim _{x \rightarrow-1}(f(x)+g(x))^{1 / n}=(2+3)^{1 / n}=5^{2 / n} \\
& (f(x) / g(x))^{1 / n}=(2 / 3)^{1 / n}
\end{aligned}
$$

Key point: We con split l in its over multiplication, addition and ()$^{1 / n}$ provided the lint exists.
Con also split up over division pronded limit of denominator is not equal to zero.

Squeeze theorem
consider $\lim _{x \rightarrow 0} \sin \left(\frac{\pi}{x}\right)=$ DNE

$$
-100 x^{2} \leq x^{2} \sin \left(\frac{\pi}{x}\right) \leq 10 x^{2}=0
$$

$a \cdot b<a$ if $b<1$

Tho Let $a \in \mathbb{R}$ and fog,h be function that satisfy

$$
f(x) \leq g(x) \leq h(x)
$$

for all x in a intaved around a, except for posit at $x=a$. If $f(x) \rightarrow L$ as $x \rightarrow a$ and $n(x) \rightarrow L$ as $x \rightarrow a$, then $g(x) \rightarrow L$ os $x \rightarrow a$.

