Infinite $e_{m i s}$
Eg: what is

As $x \rightarrow 0, \frac{1}{x^{2}}$ does not approach any red number. so, the lint does not exists.
However, os $x \rightarrow 0, \frac{1}{x^{2}}$ is positive ad becomes larger and larger. So, we ort

$$
\lim _{x \rightarrow 0} \frac{1}{x^{2}}=+\infty \vee\left(N_{0} t \text { : } l_{m i t}\right. \text { ONE }
$$

Example
2. $\lim _{x \rightarrow 0}-\frac{1}{x^{2}}=-\infty$
3. $\lim _{x \rightarrow 0} \frac{1}{x}=$?

So, $\lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty$

$$
\lim _{x \rightarrow 0^{+}} \frac{1}{x}=+\infty
$$

but $\lim _{x \rightarrow 0} \frac{1}{x}=$ DNE. (One sided l_{m} t do not agree)

Limit at infity
E. Let $f(x)=e^{x}$

$$
e^{x}=\frac{1}{e^{-x}}
$$ $e^{10 \uparrow}$

what is $\lim _{x \rightarrow-\infty} f(x)$? In other words, as x gets large and negative, what value does $f(x)$ approach $? \lim _{x \rightarrow-\infty} f(x)=0$ On the other had, $\lim _{x \rightarrow+\infty} f(x)=+\infty$ because $x \rightarrow \infty$ $f(x)$ gets aribitarly laze.

Example

$$
\lim _{x \rightarrow \infty} \frac{x+1}{2 x-1}
$$

$$
\begin{aligned}
& \frac{x^{2}+1}{x-1} \rightarrow+\infty \text { as } x \rightarrow+\infty \\
& \frac{x-1}{7^{2}+1} \rightarrow 0 \text { os } x \rightarrow+\infty
\end{aligned}
$$

Numerate r ad denominator 6_{0} th $g o$ to infinity Strategy: Falter out foolst growing fam from numerator
so,

$$
\begin{aligned}
\text { d denominator } \\
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{\frac{x+1}{x}}{\frac{2 x-1}{x}}= \lim _{x \rightarrow \infty} \frac{1+\frac{1}{x}}{2-\frac{1}{x}} \\
&=\lim _{x \rightarrow \infty} 1+\frac{1}{x} \\
& \lim _{x \rightarrow \infty} 2-\frac{1}{x}
\end{aligned}=\frac{1}{2}
\end{aligned}
$$

Continuity
Def n: A function $f(x)$ is continues at a point $a \in \mathbb{R}$ if $\lim _{x \rightarrow a} f(x)=f(a)$.
Roughly speaking, $f(x)$ is continuous at $a \in \mathbb{R}$ if it doesnot have an abrupt jumps at/neer $x=a$. If $f(x)$ is continuous at $x=a$

- $\lim _{x \rightarrow a} f(x)$ and $f(a)$ exists.

- $\left.\lim _{x \rightarrow a^{-}} f(x)=f(a)\right\}$
one side limits are equal ad is $f(a)$

Example
Let $f(x)=\left\{\begin{array}{lll}x & , x<1 \\ x+2 & , x \geqslant 1 & \text { Where is } f(x) \text { cont in }\end{array}\right.$
Need to consich $x<1, x>1 \& x=13$

- Suppose $a<1$

$$
\lim _{\substack{x \rightarrow a \\ \text { so }}} f(x)=\lim _{\substack{x \rightarrow a}} x=a=f(a)
$$

so, $f(x)$ is continuous for $x<1$.

- Suppose a>1

$$
\begin{aligned}
& \text { Suppose } a>1 \\
& \lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} x+2=a+2=f(a)
\end{aligned}
$$

$f:[1, \infty) \rightarrow \mathbb{R}$
$f(x)=x+2$
so, $f(x)$ is continuous for all $x>1$.

Example 1. cold
Suppose $a=1 \lim _{x \rightarrow 0} f(x)$ does not exist.

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{-}} f(x)=1 \\
& \lim _{x \rightarrow 1^{+}} f(x)=3
\end{aligned}
$$

Since one-sided lime of $f(x)$ at $x=1$ are not equal, $\lim _{x \rightarrow 1} f(x)$ carnot exists and $f(x)$ is not continuous ot $x=1$.

Example 2
Let $g(x)= \begin{cases}\frac{1}{x^{2}} & x \neq 0 \\ 0 & , x=0\end{cases}$
skedh

Where is $g(x)$ continuoces?
$\lim _{x \rightarrow 0} g(x) \neq g(0) \Rightarrow g(x)$ is discontinkess at $x=0$.
$g(x)$ is continkous for evary point

Zoo of continuous function
The The following functions are continuous every stere in their domain

1. Polynomials, rational function (quotient of polynona)
2. Roots and power
3. Trigonometric functions \& the in inverse
4. Exponential $\&$ figorethoms.

We say a function is continuous if it is continuous at every point in its domain.

Example
where is $f(x)=\frac{x^{2}+x+1}{x-2}$ continuous?
domain: $(-\infty, 2) \cup(2, \infty) \quad x \in(-2, \infty) \cup\{-5\}$
$f(x)$ is a irrational function, so its continuous everywhere it is shined.

Arithmetic of contrinuty
Thm Suppare $f(x)$ ad $g(x)$ are contimuous at a point $x=a$. Than the following are also continuoces at $x=a$.
(1) $f(x)+g(x)$

$$
\text { (2) } f(x) \cdot g(x)
$$

$$
\begin{aligned}
\lim _{x \rightarrow a}(f(x)+g(x))= & \lim _{x \rightarrow a} f(x) \\
& +\lim _{x \rightarrow a} g(x) \\
& =f(a)+g(a)
\end{aligned}
$$

3) $f(x) / g(x)$ poindd $g(a) \neq 0$

Example
$f(x)=\frac{\sin (x)}{2+\cos (x)}$. Is it continual?

- Numerator is continuous every where
- Denominator: $2+\cos (x)$ is continuous everywhere
$f^{3} \geqslant 2+\cos (x) \geqslant 1$ for all x (because for all x ($x) \leq 1$)
$\Rightarrow f(x)$ is continuous everywhere. fo all x

Example
$f(x)=\sin \left(x^{2}+\cos (x)\right)$ continuous at $x=0$?
$f(x)$ is a composition of two function.

$$
\left.\begin{array}{l}
g(x)=\sin (x) \\
h(x)=x^{2}+\cos (x)
\end{array}\right\} \Rightarrow f(x)=g(h(x))
$$

$h(x)$ is continuous everyobere $\} \Rightarrow f(x)$ is continues $g(x)$ is continuous evcrysorere \Rightarrow everywhere.
composition preserves continuity

Example:

$$
\begin{aligned}
& f(x)=\frac{x^{2}+x+1}{x-1} \\
& g(x)=\frac{x^{2}+x+1}{x-1} \cdot(x-1)
\end{aligned}
$$

Continuity \& interned at value.
Suppose that $f(x)$ is a function defined on the interval $[0,1]$ and $f(0)=-1$ ad $f(1)=1$
(2) Must there exists a point $c \in[0,1](-1 \leq c \leq 1)$ with $f(0)=0$?
No!
(b) What if you are told that $f(x)$ is contivensen at every point in $(0,1)<$ open interval.
No, the function could be right discontinues.

Continuity ad intamadal value
c) What if $f(x)$ is continuous at every point in $(0,1)$ ℓ is roget continvoin at $O\left(\lim _{x \rightarrow 0^{+}} f(x)=f(0)\right)$
\& is left continuous at $1\left(\lim _{x \rightarrow 1^{-}} f(x)=f(1)\right)$
Yes If we trace the graph of the function from $(0,-1)$ to $(1,1)$ with out lifting our pen, we must coss x-axis.

Inc) we say the function is continuoles on the closed interval $[0,1]$.

Intermedst value theorem.
Let $a<b$ and $f(x)$ be function that is continues at all points $a \leq x \leq b \quad(x \in[a, b])$. If Y is a number between $f(a)$ \& $f(b)$, then there exists some $c \in[a, b]$ such that $f(c)=f$.

$$
f(c)=Y
$$

betwea $f\left(t_{0}\right) \& f\left(t_{0}+2\right)$.
(a) $f(0)=-1, \quad f(1)=1-(1)$

Does ever f that satisfy (1) dso satity the followin: there exist a $c \in[0,1]$ s.t
 $f(c)=0$
(b) Also assume f is contimion a $(0,1)$.
(c) Also assum f is continuer an $[0,1]$.

