Interned at vale the
Show that $f(x)=x-1+\sin \left(\frac{\pi x}{2}\right)$
has a zero in $[0,1]$

$$
\begin{aligned}
& f(0)=0-1+\sin \left(\frac{\pi \cdot 0}{2}\right)=-1 \\
& f(1)=x-x+\sin \left(\frac{\pi \cdot 1}{2}\right)=1
\end{aligned}
$$

f is continuous on $[0,1]$ because ${ }^{1} \dagger$ $x-1$ is continuous on $[0,1]$ \& $\sin \left(\frac{\pi x}{2}\right)$ is coctinnon on $[0, \overline{1}]$.

Thus, there exists a point $c \in[0,7]$.

$$
\text { set } f(c)=0
$$

Average and intontoneows rates of chase.
What is the average rale of change of $f(x)$ in the inter val $[a, a+h], a \in R$? $f(a+n)-1$

$$
\text { Average rate of change }=\frac{f(a+h)-f(a)}{h}
$$

The slope of the second line counting $(a, f(a)),(a+h, f(a+h))$

Letting n approach zero gives us the instantaneous rate of change of f at $x=a$.
The dope of the tangent line of f at $x=a$.

$$
\lim _{h \rightarrow 0} \frac{f(a+n)-f(a)}{n}
$$

Derivatives
Def.: The dervative of a furction $f(x)$ at $x=a$

$$
\text { is } f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

prouded the lim.t exists.
Eq Compte the dervative of $g(x)=x$ at $x=a$

$$
\begin{aligned}
g^{\prime}(a) & =\lim _{h \rightarrow 0} \frac{g(a+h)-g(a)}{n} \\
& =\lim _{h \rightarrow 0} \frac{(a+h)-a}{h}=\lim _{h \rightarrow 0} \frac{h}{n}=1 \\
& =\lim _{h \rightarrow 0} \frac{a+h-a}{n}
\end{aligned}
$$

Visudze:

Derivative

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

provided the limit exist.

Simple duivatives.

- Let $f(x)=0, f^{\prime}(x)=0$

Let $g(x)=x, \quad g^{\prime}(x)=1$

Derivative of f at $x=a$

Derivative as a function
We con ales think of derivatives as a function.
F. For $f(x)=x$, we showed $f^{\prime}(x)$ at $x=a$ is 1

That is $f^{\prime}(a)=1$
Thus, $f^{\prime}(x)=1$
Def: The derivative of $f(x)$ is the function $f^{\prime}(x)$ with

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}\left(=\lim _{y \rightarrow x} \frac{f(y)-f(x)}{y-x}\right)
$$

If $f^{\prime}(x)$ exist for all x in (a, b) then we say f is differentiable in (a, b)

Example
Let $f(x)=\frac{1}{x}$. Use the definition of derivation to compute $f^{\prime}(x)=\frac{d}{d x} f(x)$

$$
\begin{aligned}
& t / f^{\prime}(x)=\frac{d}{d x} f(x) \\
& f^{\prime}(x)=\lim _{n \rightarrow 0} \frac{f(x+n)-f(x)}{h} \leqslant \frac{1}{x}\left(\frac{1}{x+n}-\frac{1}{x}\right) \cdot \frac{1}{n} \\
&=\lim _{n \rightarrow 0} \frac{\frac{1}{x+n}-\frac{n}{x}}{n} \\
&=\lim _{n \rightarrow 0} \frac{x-(x+n)}{n \cdot x(x+n)} \\
&=\lim _{n \rightarrow 0} \frac{-n}{k \cdot x(x+n)}=\lim _{n \rightarrow 0} \frac{-1}{x(x+n)}=-\frac{1}{x^{2}}
\end{aligned}
$$

so, $f^{\prime}(x)=-\frac{1}{x^{2}}$ pronged $x \neq 0$

Notation
The following notations are used for "the deveatine of $f(x)$ al $x^{\prime \prime}$

$$
\begin{array}{llll}
f & \frac{d}{d x}(x) & \frac{d f}{d x} & D f(x) \quad D_{x} f(x) \quad \dot{f}(x)
\end{array}
$$

These are wed for "the derivative of $f(x)$ at $x=a$ ". $\left.f^{\prime}(a) \quad \frac{d}{d x} f(a) \quad \frac{d f}{d x}\right|_{x=a} D f(a) \quad D_{x} f(a) \quad \dot{f}(a)$

Example
Find the equation of tagait lie to $f(x)=\sqrt{x}$ at $x=1$ slope of tangat line is $f^{\prime}(1)$

$$
\begin{aligned}
f^{\prime}(1) & =\lim _{n \rightarrow 0} \frac{\sqrt{1+n}-\sqrt{1}}{n} \\
& =\lim _{n \rightarrow 0} \frac{\sqrt{1+n}-\sqrt{1}}{n} \frac{(\sqrt{1+n}+\sqrt{1})}{(\sqrt{1+n}+\sqrt{1})}
\end{aligned}
$$

$$
=\lim _{n \rightarrow 0} \frac{(1+n)-1}{h(\sqrt{1+n}+\sqrt{1})}=\lim _{n \rightarrow 0} \frac{\hbar}{h(\sqrt{1+n}+\sqrt{T})}=\frac{1}{2}
$$

Also, $(1, f(1))=(1,1)$ is a point on the bee.

$$
\begin{aligned}
\Rightarrow\left(y-y_{0}\right)=m\left(x-x_{0}\right) & \Rightarrow y-1=\frac{1}{2}(x-1) \\
& \Rightarrow y=\frac{1}{2} x+\frac{1}{2}
\end{aligned}
$$

Erample
Give on exenple ofa function which is con tinuous at $x=0$ but not d fferent iable at $x=0$ considr $f(x)=|x|$

$$
f^{\prime}(x)=\left\{\begin{array}{cl}
-1 & \text { if } x<0 \\
D N E & \text { if } x=0 \\
1 & \text { if } x>0
\end{array}\right.
$$

consider $f(x)=\frac{1}{x}$. We showed $f^{\prime}(x)=-\frac{1}{x^{2}}$ if $x \neq 0$.

$$
\begin{aligned}
\lim _{n \rightarrow 0} \frac{f(0+n)-f(0)}{n} & =\lim _{n \rightarrow 0} \frac{|0+n|-10 \mid}{h} \\
& =\lim _{n \rightarrow 0} \frac{|n|}{h}
\end{aligned}
$$

Continuity and Differatiability
The If a function $f(x)$ is afferatiable at $x=a$, then $f(x)$ is continuous at $x=a$.
Fha: $\lim _{x \rightarrow a} f(x)=f(a) \Longleftrightarrow \lim _{h \rightarrow 0} f(a+h)=f(a)$

$$
\begin{aligned}
& x \rightarrow a \\
& \cdot \lim _{n \rightarrow 0}(f(a+n)-f(a)= \frac{f(a+n)-f(a) \cdot f(a))}{n} \\
&=\lim _{n \rightarrow 0}\left(\frac{f(a+n)-f(a)}{n} \cdot h\right) \\
&=\lim _{n \rightarrow 0} \frac{f(a+n)-f(a)}{h} \cdot \lim _{h \rightarrow 0} h \\
&=f^{\prime}(a) \cdot 0=0
\end{aligned}
$$

Differatiabilty \Rightarrow continuity

Rules of differatiation
Our goal is to be able to compete derivative of complicated function by breaking them int simple derivatives.
Basic derivation $\quad \frac{d}{d x} 1=0 \quad \frac{d}{d x} x=1=0 \quad=1$
What is $\frac{d}{d x}(2+3 x)=\frac{d}{d x} 2+\frac{d}{d x} 3 \cdot x=2\left[\frac{d}{d x} 1+3\left[\frac{d}{d x} x\right.\right.$

$$
\begin{aligned}
\frac{a x}{\hbar_{2.1}} & =2.0+3.1 \\
& =3
\end{aligned}
$$

- Differentiation split over add ton ad substiontion
- We ca take constants out

Linearity of defferatiotion
Let $f(x), g(x)$ be differateble function. Let $\alpha, \beta \in \mathbb{R}$ be constants.
For on y function $s(x)=\widetilde{\alpha} f(x)+\beta g(x)$
the derivative of $S(x)$ at $x-a$ is

$$
S^{\prime}(x)=\alpha f^{\prime}(x)+\beta g^{\prime}(x)
$$

6. $f(x)=\sqrt{x}$ we "shoved" $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$ for $x \neq 0$
so, $g(x)=\sqrt{\sqrt{x}}$ the $g^{\prime}(x)=5 \cdot \frac{d}{d x} \sqrt{x}=\frac{5}{2 \sqrt{x}}$ fox $x \neq 0$.
but $h(x)=\sqrt{5 x} \leftarrow$ this theorem does not apply death.
$=\sqrt{5} \sqrt{x}<$ applies here ad $h^{\prime}(x)=\frac{\sqrt{5}}{2 \sqrt{x}}\left(\frac{1}{\sqrt{2}} \sqrt{2}\right)$

Product rule
Let $f(x)$ and $g(x)$ be defferatisle fuction. Them

$$
\begin{aligned}
& f(x) \text { ad } g(x) \text { oc } \\
& \frac{d}{d x}(f(x) \cdot g(x))=\frac{d}{d x} f(x) \cdot g(x)+f(x) \cdot \frac{d}{d x} g(x) \\
& d d^{d x}\left(\frac{h(x) \cdot(x) \cdot g(x))}{d x} f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x) .\right.
\end{aligned}
$$

6. Compite $\frac{d}{d x} x^{2}$ uing pooduct rule.

Let $f(x)=x, g(x)=x$

$$
\begin{aligned}
& \text { Let } f(x)=x, g(x)=x \\
& \frac{d}{d x} x^{2}=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)=1 \cdot x+x \cdot 1=2 x
\end{aligned}
$$

E9: Compte $\frac{d}{d x} x^{3}$

$$
\begin{aligned}
& \text { Compet } \frac{d}{d x} x^{2} \\
& \frac{d}{d x} x^{3}=\frac{d}{d x}\left(x^{2} \cdot x\right)=\frac{d}{d x} \cdot x+x^{2} \cdot \frac{d}{d x}=2 x \cdot x+x^{2} \cdot 1 \\
& =3 x^{2}
\end{aligned}
$$

E

$$
\begin{aligned}
\frac{d}{d x} x^{4} & =\frac{d}{d x}\left(x^{3} \cdot x\right) \\
& =\frac{d}{d x} x^{3} \cdot x+x^{3} \cdot \frac{d}{d x} x \\
& =\frac{3 x^{2} \cdot x+x^{3} \cdot 1=4 x^{3}}{}
\end{aligned}
$$

Can you see the patton?

$$
\begin{aligned}
& \text { "you see the patton! } \\
& \frac{d}{d x} x^{n}=n x^{n-1} \text { for any } n>0 \text {, } n \text {-integer. }
\end{aligned}
$$

It is more generally true!

Pow rale
$\frac{d}{d x} x^{r}=r x^{r-1}$ for on g real number $r \quad f(x)=r$
E. compute $\frac{d}{d x} \sqrt{x}=\frac{d}{d x} x^{\frac{1}{2}}=\frac{1}{2} x^{\frac{1}{2}-1}=\frac{1}{2} x^{-\frac{1}{2}}=\frac{1}{2 \sqrt{x}}$

Using product ma:

- use $\sqrt{x} \cdot \sqrt{x}=x$ to $\frac{d}{d e} \sqrt{x}=x$.
- $f(x)=\left(2 x^{2}+3 x+2\right)\left(x^{100}+2\right)$. That is $f^{\prime}(-1)$

$$
\begin{aligned}
& \frac{n^{2}+5 n-n^{2}}{\sqrt{n^{2}+5 n}+n}=\frac{5 n}{\sqrt{n^{2}+5 n}+n}=\frac{\frac{5 n}{n}}{\sqrt{\frac{n^{2}}{n^{2}}+\frac{5}{n^{2}}}+1} \\
& =\frac{5}{\sqrt{1+\frac{5}{n}}+1} \\
& \frac{(t-8) \tilde{(t+8)}}{2\left(2 t^{2}+11 t-40\right)} \\
& 2(t+8)(2 t-5) \\
& \frac{t-8}{2(2 t-5)} \\
& \frac{(t+8)(2 t-5)}{-5 t+16 t} \\
& =11 t
\end{aligned}
$$

