Review of chapter O and Appand $x A$
Sinp 6 secting:
In a bussiness setting, moximize pooft from selling of \# of a pooduct at per cnit price p in the presence of $\cos t$ (fixed cost and vasiable cost)

$$
\begin{gathered}
\text { Profl }= \\
\text { Reveru } \\
?
\end{gathered}
$$

Hoo do we moxinize pooft.

A complex setting.
2) Image debluning: How do we remove noise, bless, or other artifact from on input image?
Ore way: If we have a way to generate chon images:

Find the image in the set B that is "closet" to the input blurry image

Functions
Function as a formula:

More generally, a formula is not graded to define a function

Functions

$$
B=\{1,2,3,4\} \quad S \notin B
$$

Let $f: A \rightarrow B$

1. The set A is the do main of "1 b dongs to B "
2. The set B is the co domain of f (contains output of f)
3. The range of f is range $(f)=\{b \in B \mid$ there exists some $a \in A$ so that $\}$

$f(a)=b$

$$
\operatorname{Range}(f)=\{1,2,3,4,5,6\}=\{1,2, \ldots, 6\} \subseteq \frac{C}{i} \frac{B}{\text { contains }}
$$

Exponontial Furction
$2^{x}, 10^{x}, e^{x}$, etc ave all exponatial functions. An exponatial function is a function of the form $f(x)=a b^{x}$, where $a \in \mathbb{R}, b \in \mathbb{R}$
 sel fred numbas. exponantial functions coptries oxporatial grouth $a b^{r x} \rightarrow$ mas sanral
Most importal case is

$$
y=e^{x}
$$

$e=2.718 \ldots$ Eubiris constat.

On-to-ose function
Exponential function $f(x)=a b^{x}$ is $00-$ to -as. Def". A function f is on-to-ove (ali called infective) whom two unique donets in domain of f clos not map to the sane element in the range. That is:

$$
\text { if } x_{1} \neq x_{2} \text {, then } f\left(x_{2}\right) \neq f\left(x_{2}\right) \text {. }
$$

Def n: A function passes the horizontal live tot if no horizontal line intersats the graph y-fix) more
 than once

Logarithouc functions
The isar thionic function of base of $f(x)=\log _{q}(x)$ outputs a number that q mut be raised to togie x.
"what poler of q gives x ".
Logarithmic functions is defined for any q so expat for $q=1$. We ong conchs $q>1 \cdot g: ~ g=0,2,10$ Def n Let $q>1$. Then the logos hic with base q is defined by

$$
y=\log _{f}(x) \underset{\text { if and only 't }}{\Longleftrightarrow} x=q^{y} \quad \log _{10}(100)=2
$$

Logarthani functions.
why?
Note that

$$
\log _{q}(q)=x \quad \text { ad } \quad q^{\log _{f}(x)}=x
$$

bename the power to whin we have to raise of to get q^{x} is x.
$f(x)=\log _{8}(x)$ is a 1.1 function. so, assume $q^{\log _{q}(x)}=\tilde{x} \equiv x$
by definition $\log _{q}(x)=\log _{g}(\tilde{x})$

$$
\Rightarrow x=\tilde{x} \text { because } \log \text { is } 1 \cdot 1
$$

