MATH 104 Workshop 4

Marginals, chain rule, and logarithmic differentiation

If you did not attend the workshop, please submit answers to questions 2 and 3.

1. Evaluate $\frac{d}{d \theta} \log (\csc \theta)$.
2. A particle moves along the Cartesian plane from time $t=\pi / 2$ to time $t=\pi / 2$. The x -coordinate of the particle at time t is given by $x=\cos t$, and the y-coordinate is given by $y=\sin t$, so the particle traces a curve in the plane.
(a) When does the tangent line to that curve have slope 1 ?
(b) What is the equation of the tangent line at this point?
3. Differentiate $f(x)=(x+1)\left(3 x^{2}+10\right)^{2}\left(e x^{3}+1\right)^{3}\left(x^{4}+e^{x}\right)^{4}\left(x^{5}+\pi^{x}\right)^{5}$
4. (Revisiting Workshop 1 bussiness problem) M-Wave Co. makes and sells the world's first pocket quantum computers! When each quantum computer is sold for $\$ 500$, the weekly demand is 4,000 units. For every $\$ 1$ increase in the price of each unit, the number of quantum computers sold per week decreases by 10. Assume that it costs $\$ 300$ to produce each quantum computer.
(a) What is the marginal cost, marginal revenue, and marginal profit?
(b) When is profit maximized?
