MATH 104 Workshop 6

Related Rates. Mean Value Theorem.
Submit solutions to problems 2 and 4. This is required for everyone.

1. The volume of a right circular cylinder is $60 \mathrm{~cm}^{3}$ and is increasing at $2 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$ at a time when the radius is 5 cm and is increasing at a rate of $1 \mathrm{~cm} \mathrm{~min}{ }^{-1}$. How fast it the height of the cylinder changing at that time?
2. A water tank in the shape of an inverted right circular cone with the top radius 10 m and depth 8 m . Water is flowing in at a rate of $0.1 \mathrm{~m}^{3} \mathrm{~min}^{-1}$.
(a) How fast is the depth of the of the water in the tank increasing when the water is 4 m deep?
(b) If there is a leak in this tank and water leaks out at a rate of $\frac{h^{3}}{1000} \mathrm{~m}^{3} \mathrm{~min}^{-1}$ when the depth of the water in the tank is $h \mathrm{~m}$. How full can the tank get in this case.
3. State the Mean Value Theorem and Rolle's Theorem. Identify Rolle's Theorem as a special case of Mean Value Theorem.
4. Let $f(x)=e^{x}+(1-e) x^{2}-1$. Show that there exists a real number c such that $f^{\prime}(c)=0$.
